Miao Zhang, Yuxin Si, Yu Fu, Jiaying An, Qingxiang Zhang, Youlin Zhang, Han Zhang, Yujie Yu, Di Zhang, Yuxin Fang
{"title":"探索植物世界:植物可穿戴传感器实时检测的应用与创新。","authors":"Miao Zhang, Yuxin Si, Yu Fu, Jiaying An, Qingxiang Zhang, Youlin Zhang, Han Zhang, Yujie Yu, Di Zhang, Yuxin Fang","doi":"10.1080/10408347.2025.2499605","DOIUrl":null,"url":null,"abstract":"<p><p>Plants play a crucial role in improving the environment by regulating the temperature, preventing soil erosion, and reducing wind speed. By yielding edible resources such as food crops, vegetables, and fruits, plants also provide essential nutrients for human beings. Consequently, the real-time monitoring of plant growth and surrounding environment has been the primary focus of researchers. Traditional plant monitoring relies on manual inspection, which is both subjective and discontinuous. In recent years, ongoing advancements in wearable sensors have enabled their application in various areas of plant monitoring such as plant growth assessment, environmental monitoring, nutritional detection, water management, and pest warning. These wearable sensors can be directly fixed to plant organs to deliver real-time data on plant growth and environmental conditions <i>via</i> wireless connections with smart devices. This facilitates user management and monitoring, which can contribute to the development of intelligent agriculture with high planting efficiency and sustainability. This review summarizes the design principles, manufacturing methods, characteristics, and feasibility of plant-wearable sensors based on their functions, including plant-phenotype sensors (e.g., hormones and nutrients), plant-growth-environment sensors (e.g., surrounding humidity), and plant stress sensors (e.g., pesticides, volatile organic compounds, and environmental stress). It also explores the challenges and development prospects in this field, providing valuable insights into the future application of wearable sensors to effectively optimize the plant growth status for crop yield and quality.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-17"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of the Plant World: Application and Innovation of Plant-Wearable Sensors for Real-Time Detection.\",\"authors\":\"Miao Zhang, Yuxin Si, Yu Fu, Jiaying An, Qingxiang Zhang, Youlin Zhang, Han Zhang, Yujie Yu, Di Zhang, Yuxin Fang\",\"doi\":\"10.1080/10408347.2025.2499605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants play a crucial role in improving the environment by regulating the temperature, preventing soil erosion, and reducing wind speed. By yielding edible resources such as food crops, vegetables, and fruits, plants also provide essential nutrients for human beings. Consequently, the real-time monitoring of plant growth and surrounding environment has been the primary focus of researchers. Traditional plant monitoring relies on manual inspection, which is both subjective and discontinuous. In recent years, ongoing advancements in wearable sensors have enabled their application in various areas of plant monitoring such as plant growth assessment, environmental monitoring, nutritional detection, water management, and pest warning. These wearable sensors can be directly fixed to plant organs to deliver real-time data on plant growth and environmental conditions <i>via</i> wireless connections with smart devices. This facilitates user management and monitoring, which can contribute to the development of intelligent agriculture with high planting efficiency and sustainability. This review summarizes the design principles, manufacturing methods, characteristics, and feasibility of plant-wearable sensors based on their functions, including plant-phenotype sensors (e.g., hormones and nutrients), plant-growth-environment sensors (e.g., surrounding humidity), and plant stress sensors (e.g., pesticides, volatile organic compounds, and environmental stress). It also explores the challenges and development prospects in this field, providing valuable insights into the future application of wearable sensors to effectively optimize the plant growth status for crop yield and quality.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2025.2499605\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2025.2499605","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Exploration of the Plant World: Application and Innovation of Plant-Wearable Sensors for Real-Time Detection.
Plants play a crucial role in improving the environment by regulating the temperature, preventing soil erosion, and reducing wind speed. By yielding edible resources such as food crops, vegetables, and fruits, plants also provide essential nutrients for human beings. Consequently, the real-time monitoring of plant growth and surrounding environment has been the primary focus of researchers. Traditional plant monitoring relies on manual inspection, which is both subjective and discontinuous. In recent years, ongoing advancements in wearable sensors have enabled their application in various areas of plant monitoring such as plant growth assessment, environmental monitoring, nutritional detection, water management, and pest warning. These wearable sensors can be directly fixed to plant organs to deliver real-time data on plant growth and environmental conditions via wireless connections with smart devices. This facilitates user management and monitoring, which can contribute to the development of intelligent agriculture with high planting efficiency and sustainability. This review summarizes the design principles, manufacturing methods, characteristics, and feasibility of plant-wearable sensors based on their functions, including plant-phenotype sensors (e.g., hormones and nutrients), plant-growth-environment sensors (e.g., surrounding humidity), and plant stress sensors (e.g., pesticides, volatile organic compounds, and environmental stress). It also explores the challenges and development prospects in this field, providing valuable insights into the future application of wearable sensors to effectively optimize the plant growth status for crop yield and quality.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.