{"title":"考虑顾客细分的全渠道零售策略优化。","authors":"Shuangpeng Yang, Li Zhang","doi":"10.1177/0193841X251328710","DOIUrl":null,"url":null,"abstract":"<p><p>Unlike previous studies on fixed logistics nodes, this research explored how consumer distribution impacts store selection and inventory balance, integrating the <i>ship-from-store</i> strategy to increase fulfillment within multiperiod sales plans. Specifically, omnichannel retailers (O-tailer) must sequentially decide on inventory replenishment from suppliers to the distribution center (DC), allocation from the DC to stores, and which department will fulfill online orders. We introduce a multiperiod stochastic optimization model and solve it with a robust two-stage approach (RTA). In Stage 1, we use the K-means algorithm and silhouette coefficients to determine the optimal number of stores. In Stage 2, linear decision rule (LDR) are employed to decide on replenishment, allocation, and order fulfillment quantities. Numerical experiments show that RTA outperforms existing methods, achieving solutions with efficiency gaps of less than 10%, even when assumptions are not fully met. Additionally, the sensitivity analysis shows that variations in product prices, fulfillment costs, market share, and customer distribution consistently lead to greater profits with the <i>ship-from-store</i> strategy.</p>","PeriodicalId":47533,"journal":{"name":"Evaluation Review","volume":" ","pages":"193841X251328710"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing an Omnichannel Retail Strategy Considering Customer Segmentation.\",\"authors\":\"Shuangpeng Yang, Li Zhang\",\"doi\":\"10.1177/0193841X251328710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unlike previous studies on fixed logistics nodes, this research explored how consumer distribution impacts store selection and inventory balance, integrating the <i>ship-from-store</i> strategy to increase fulfillment within multiperiod sales plans. Specifically, omnichannel retailers (O-tailer) must sequentially decide on inventory replenishment from suppliers to the distribution center (DC), allocation from the DC to stores, and which department will fulfill online orders. We introduce a multiperiod stochastic optimization model and solve it with a robust two-stage approach (RTA). In Stage 1, we use the K-means algorithm and silhouette coefficients to determine the optimal number of stores. In Stage 2, linear decision rule (LDR) are employed to decide on replenishment, allocation, and order fulfillment quantities. Numerical experiments show that RTA outperforms existing methods, achieving solutions with efficiency gaps of less than 10%, even when assumptions are not fully met. Additionally, the sensitivity analysis shows that variations in product prices, fulfillment costs, market share, and customer distribution consistently lead to greater profits with the <i>ship-from-store</i> strategy.</p>\",\"PeriodicalId\":47533,\"journal\":{\"name\":\"Evaluation Review\",\"volume\":\" \",\"pages\":\"193841X251328710\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evaluation Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0193841X251328710\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evaluation Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0193841X251328710","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Optimizing an Omnichannel Retail Strategy Considering Customer Segmentation.
Unlike previous studies on fixed logistics nodes, this research explored how consumer distribution impacts store selection and inventory balance, integrating the ship-from-store strategy to increase fulfillment within multiperiod sales plans. Specifically, omnichannel retailers (O-tailer) must sequentially decide on inventory replenishment from suppliers to the distribution center (DC), allocation from the DC to stores, and which department will fulfill online orders. We introduce a multiperiod stochastic optimization model and solve it with a robust two-stage approach (RTA). In Stage 1, we use the K-means algorithm and silhouette coefficients to determine the optimal number of stores. In Stage 2, linear decision rule (LDR) are employed to decide on replenishment, allocation, and order fulfillment quantities. Numerical experiments show that RTA outperforms existing methods, achieving solutions with efficiency gaps of less than 10%, even when assumptions are not fully met. Additionally, the sensitivity analysis shows that variations in product prices, fulfillment costs, market share, and customer distribution consistently lead to greater profits with the ship-from-store strategy.
期刊介绍:
Evaluation Review is the forum for researchers, planners, and policy makers engaged in the development, implementation, and utilization of studies aimed at the betterment of the human condition. The Editors invite submission of papers reporting the findings of evaluation studies in such fields as child development, health, education, income security, manpower, mental health, criminal justice, and the physical and social environments. In addition, Evaluation Review will contain articles on methodological developments, discussions of the state of the art, and commentaries on issues related to the application of research results. Special features will include periodic review essays, "research briefs", and "craft reports".