高静水压力下SARS-CoV-2灭活疫苗的研制及体内评价

IF 6.5 1区 医学 Q1 IMMUNOLOGY
Martina Brandolini, Pietro Rocculi, Michele Morbarigazzi, Alessandra Mistral De Pascali, Giorgio Dirani, Silvia Zannoli, Davide Lelli, Antonio Lavazza, Francesca Battioni, Laura Grumiro, Simona Semprini, Massimiliano Guerra, Giulia Gatti, Laura Dionisi, Ludovica Ingletto, Claudia Colosimo, Anna Marzucco, Maria Sofia Montanari, Monica Cricca, Alessandra Scagliarini, Vittorio Sambri
{"title":"高静水压力下SARS-CoV-2灭活疫苗的研制及体内评价","authors":"Martina Brandolini, Pietro Rocculi, Michele Morbarigazzi, Alessandra Mistral De Pascali, Giorgio Dirani, Silvia Zannoli, Davide Lelli, Antonio Lavazza, Francesca Battioni, Laura Grumiro, Simona Semprini, Massimiliano Guerra, Giulia Gatti, Laura Dionisi, Ludovica Ingletto, Claudia Colosimo, Anna Marzucco, Maria Sofia Montanari, Monica Cricca, Alessandra Scagliarini, Vittorio Sambri","doi":"10.1038/s41541-025-01136-7","DOIUrl":null,"url":null,"abstract":"<p><p>Developing low-cost vaccine production strategies is crucial to achieving global health equity and mitigating the spread and impact of disease outbreaks. High hydrostatic pressure (HHP) technology is a widely used technology employed in the food industry for long-term preservation. This project aims at validating HHP as a cost-effective method for the production of highly immunogenic thermal stable whole-virus SARS-CoV-2 vaccines. Structural studies on HHP-inactivated viruses demonstrated pressure-dependent effects, with higher pressures (500-600 MPa) destabilizing viral morphology. Immunogenicity assessments, in animal models, revealed that 500 MPa treatment elicited the most robust humoral and cellular immune responses, outperforming heat inactivation. Additionally, HHP-inactivated viral preparation retained thermostability for 30 days at 4 °C, reducing cold-chain dependencies and enabling vaccine distribution also in low-resource settings. With its rapid, cost-effective, and scalable production process, HHP presents a transformative, equitable solution for global vaccine development, particularly for emerging pathogens.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"83"},"PeriodicalIF":6.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032236/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and in vivo evaluation of a SARS-CoV-2 inactivated vaccine using high hydrostatic pressure.\",\"authors\":\"Martina Brandolini, Pietro Rocculi, Michele Morbarigazzi, Alessandra Mistral De Pascali, Giorgio Dirani, Silvia Zannoli, Davide Lelli, Antonio Lavazza, Francesca Battioni, Laura Grumiro, Simona Semprini, Massimiliano Guerra, Giulia Gatti, Laura Dionisi, Ludovica Ingletto, Claudia Colosimo, Anna Marzucco, Maria Sofia Montanari, Monica Cricca, Alessandra Scagliarini, Vittorio Sambri\",\"doi\":\"10.1038/s41541-025-01136-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Developing low-cost vaccine production strategies is crucial to achieving global health equity and mitigating the spread and impact of disease outbreaks. High hydrostatic pressure (HHP) technology is a widely used technology employed in the food industry for long-term preservation. This project aims at validating HHP as a cost-effective method for the production of highly immunogenic thermal stable whole-virus SARS-CoV-2 vaccines. Structural studies on HHP-inactivated viruses demonstrated pressure-dependent effects, with higher pressures (500-600 MPa) destabilizing viral morphology. Immunogenicity assessments, in animal models, revealed that 500 MPa treatment elicited the most robust humoral and cellular immune responses, outperforming heat inactivation. Additionally, HHP-inactivated viral preparation retained thermostability for 30 days at 4 °C, reducing cold-chain dependencies and enabling vaccine distribution also in low-resource settings. With its rapid, cost-effective, and scalable production process, HHP presents a transformative, equitable solution for global vaccine development, particularly for emerging pathogens.</p>\",\"PeriodicalId\":19335,\"journal\":{\"name\":\"NPJ Vaccines\",\"volume\":\"10 1\",\"pages\":\"83\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032236/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41541-025-01136-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01136-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

制定低成本疫苗生产战略对于实现全球卫生公平和减轻疾病暴发的传播和影响至关重要。高静水压力(HHP)技术是一种广泛应用于食品工业的长期保鲜技术。该项目旨在验证HHP作为生产高免疫原性热稳定性全病毒SARS-CoV-2疫苗的成本效益方法。hhp灭活病毒的结构研究显示压力依赖性效应,较高的压力(500-600 MPa)会破坏病毒形态。在动物模型中进行的免疫原性评估显示,500 MPa处理引发了最强大的体液和细胞免疫反应,优于热灭活。此外,hhp灭活病毒制剂在4°C下可保持30天的热稳定性,减少了对冷链的依赖,也使疫苗能够在资源匮乏的环境中分发。凭借其快速、具有成本效益和可扩展的生产过程,HHP为全球疫苗开发提供了一种变革性、公平的解决方案,特别是针对新出现的病原体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and in vivo evaluation of a SARS-CoV-2 inactivated vaccine using high hydrostatic pressure.

Developing low-cost vaccine production strategies is crucial to achieving global health equity and mitigating the spread and impact of disease outbreaks. High hydrostatic pressure (HHP) technology is a widely used technology employed in the food industry for long-term preservation. This project aims at validating HHP as a cost-effective method for the production of highly immunogenic thermal stable whole-virus SARS-CoV-2 vaccines. Structural studies on HHP-inactivated viruses demonstrated pressure-dependent effects, with higher pressures (500-600 MPa) destabilizing viral morphology. Immunogenicity assessments, in animal models, revealed that 500 MPa treatment elicited the most robust humoral and cellular immune responses, outperforming heat inactivation. Additionally, HHP-inactivated viral preparation retained thermostability for 30 days at 4 °C, reducing cold-chain dependencies and enabling vaccine distribution also in low-resource settings. With its rapid, cost-effective, and scalable production process, HHP presents a transformative, equitable solution for global vaccine development, particularly for emerging pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Vaccines
NPJ Vaccines Immunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍: Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信