麦芽糖糊精在极度嗜热的木质纤维素降解细菌贝氏无氧细胞(Caldicellulosiruptor贝氏)中的转运。

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Journal of Bacteriology Pub Date : 2025-05-22 Epub Date: 2025-04-30 DOI:10.1128/jb.00401-24
Hansen Tjo, Virginia Jiang, Jerelle A Joseph, Jonathan M Conway
{"title":"麦芽糖糊精在极度嗜热的木质纤维素降解细菌贝氏无氧细胞(Caldicellulosiruptor贝氏)中的转运。","authors":"Hansen Tjo, Virginia Jiang, Jerelle A Joseph, Jonathan M Conway","doi":"10.1128/jb.00401-24","DOIUrl":null,"url":null,"abstract":"<p><p>Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. <i>Anaerocellum bescii</i> (formerly <i>Caldicellulosiruptor bescii</i>) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the released oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-binding cassette (ABC) transporters in <i>A. bescii</i> governing maltodextrin transport. Utilizing past transcriptomic studies on <i>Anaerocellum</i> and <i>Caldicellulosiruptor</i> species, we identify two maltodextrin transporters in <i>A. bescii</i> and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins, such as maltose and trehalose, with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micromolar range. Using a sequence-structure-function comparison approach combined with molecular modeling, we provide context for the specificity of each of these substrate-binding proteins. We propose that <i>A. bescii</i> utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency.</p><p><strong>Importance: </strong>Here, we reveal the biophysical and structural basis for oligosaccharide transport by two maltodextrin ATP-binding cassette (ABC) transporters in <i>Anaerocellum bescii</i>. This is the first biophysical characterization of carbohydrate uptake in this organism and establishes a workflow for characterizing other oligosaccharide transporters in <i>A. bescii</i> and similar biomass-degrading thermophiles of interest for lignocellulosic bioprocessing. By deciphering the mechanisms underlying high-affinity sugar uptake in <i>A. bescii</i>, we shed light on an underexplored step between extracellular lignocellulose degradation and intracellular conversion of sugars to metabolic products. This understanding will expand opportunities for harnessing sugar transport in thermophiles to reshape lignocellulose bioprocessing as part of a renewable bioeconomy.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0040124"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096829/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maltodextrin transport in the extremely thermophilic, lignocellulose degrading bacterium <i>Anaerocellum bescii</i> (f. <i>Caldicellulosiruptor bescii</i>).\",\"authors\":\"Hansen Tjo, Virginia Jiang, Jerelle A Joseph, Jonathan M Conway\",\"doi\":\"10.1128/jb.00401-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. <i>Anaerocellum bescii</i> (formerly <i>Caldicellulosiruptor bescii</i>) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the released oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-binding cassette (ABC) transporters in <i>A. bescii</i> governing maltodextrin transport. Utilizing past transcriptomic studies on <i>Anaerocellum</i> and <i>Caldicellulosiruptor</i> species, we identify two maltodextrin transporters in <i>A. bescii</i> and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins, such as maltose and trehalose, with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micromolar range. Using a sequence-structure-function comparison approach combined with molecular modeling, we provide context for the specificity of each of these substrate-binding proteins. We propose that <i>A. bescii</i> utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency.</p><p><strong>Importance: </strong>Here, we reveal the biophysical and structural basis for oligosaccharide transport by two maltodextrin ATP-binding cassette (ABC) transporters in <i>Anaerocellum bescii</i>. This is the first biophysical characterization of carbohydrate uptake in this organism and establishes a workflow for characterizing other oligosaccharide transporters in <i>A. bescii</i> and similar biomass-degrading thermophiles of interest for lignocellulosic bioprocessing. By deciphering the mechanisms underlying high-affinity sugar uptake in <i>A. bescii</i>, we shed light on an underexplored step between extracellular lignocellulose degradation and intracellular conversion of sugars to metabolic products. This understanding will expand opportunities for harnessing sugar transport in thermophiles to reshape lignocellulose bioprocessing as part of a renewable bioeconomy.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0040124\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00401-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00401-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖转运到微生物细胞是一个关键的,但尚未充分研究在木质纤维素生物质转化为代谢产物的步骤。贝氏无氧细菌(Anaerocellum bescii)是一种极度嗜热的厌氧细菌,它可以很容易地将木质纤维素生物质中的纤维素和半纤维素成分降解成多种低聚糖底物。尽管对这种微生物如何降解木质纤维素有了重要的了解,但其将释放的低聚糖高效运输到细胞中的机制却相对缺乏探索。在这里,我们鉴定和表征了麦芽糖糊精运输的麦芽糖糊精中的atp结合盒(ABC)转运体。利用过去对Anaerocellum和Caldicellulosiruptor物种的转录组学研究,我们鉴定了贝氏麦芽糖糊精转运蛋白,并表达和纯化了它们的底物结合蛋白(Athe_2310和Athe_2574)进行了表征。通过差示扫描量热法和等温滴定量热法,我们发现Athe_2310与较短的麦芽糖糊精(如麦芽糖和海糖)有很强的相互作用,解离常数在微摩尔范围内,而Athe_2574与较长的麦芽糖糊精结合,解离常数在亚微摩尔范围内。使用序列-结构-功能比较方法结合分子建模,我们为这些底物结合蛋白的特异性提供了背景。我们提出贝氏单胞杆菌利用正交ABC转运体来摄取不同长度的麦芽寡糖,以最大限度地提高运输效率。本研究揭示了贝氏无氧细胞中两种麦芽糖糊精atp结合盒(ABC)转运体运输低聚糖的生物物理和结构基础。这是该生物中碳水化合物摄取的第一个生物物理表征,并建立了表征贝氏螺旋藻和类似的木质纤维素生物加工感兴趣的生物质降解嗜热菌中其他低聚糖转运体的工作流程。通过破译贝氏螺旋藻高亲和力糖摄取的机制,我们揭示了胞外木质纤维素降解和细胞内糖转化为代谢产物之间一个未被探索的步骤。这一认识将扩大利用嗜热菌中的糖运输来重塑木质纤维素生物加工作为可再生生物经济的一部分的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maltodextrin transport in the extremely thermophilic, lignocellulose degrading bacterium Anaerocellum bescii (f. Caldicellulosiruptor bescii).

Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. Anaerocellum bescii (formerly Caldicellulosiruptor bescii) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the released oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-binding cassette (ABC) transporters in A. bescii governing maltodextrin transport. Utilizing past transcriptomic studies on Anaerocellum and Caldicellulosiruptor species, we identify two maltodextrin transporters in A. bescii and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins, such as maltose and trehalose, with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micromolar range. Using a sequence-structure-function comparison approach combined with molecular modeling, we provide context for the specificity of each of these substrate-binding proteins. We propose that A. bescii utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency.

Importance: Here, we reveal the biophysical and structural basis for oligosaccharide transport by two maltodextrin ATP-binding cassette (ABC) transporters in Anaerocellum bescii. This is the first biophysical characterization of carbohydrate uptake in this organism and establishes a workflow for characterizing other oligosaccharide transporters in A. bescii and similar biomass-degrading thermophiles of interest for lignocellulosic bioprocessing. By deciphering the mechanisms underlying high-affinity sugar uptake in A. bescii, we shed light on an underexplored step between extracellular lignocellulose degradation and intracellular conversion of sugars to metabolic products. This understanding will expand opportunities for harnessing sugar transport in thermophiles to reshape lignocellulose bioprocessing as part of a renewable bioeconomy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信