Olga Garbuz, Emil Ceban, Dorin Istrati, Nadejda Railean, Ion Toderas, Aurelian Gulea
{"title":"以硫代氨基脲为基础的化合物:具有抗氧化特性的癌细胞抑制剂。","authors":"Olga Garbuz, Emil Ceban, Dorin Istrati, Nadejda Railean, Ion Toderas, Aurelian Gulea","doi":"10.3390/molecules30092077","DOIUrl":null,"url":null,"abstract":"<p><p>Thiosemicarbazone-based compounds have attracted significant attention in recent years due to their potential as inhibitors of cancer cell proliferation. They not only exhibit strong antiproliferative effects but also possess antioxidant properties that are crucial in combating oxidative stress linked to cancer progression. This review highlights specific compounds that not only exhibit significantly higher antiproliferative activities but also demonstrate lower toxicity compared to traditional chemotherapy agents. This is important because it suggests that these compounds could provide better treatment options while reducing the side effects often associated with chemotherapy. A detailed analysis of the structure-activity relationships (SARs) reveals that the unique structural features of these compounds play a crucial role in their enhanced effectiveness. Understanding which molecular characteristics contribute to improved activity will be key for future compound design. The findings from this study emphasize the need for further exploration and development of these novel agents. By investigating their biological mechanisms and optimizing their structures, researchers can improve cancer treatment strategies, providing safer and more effective options for patients. Despite substantial previous research on thiosemicarbazones and isothiosemicarbazones, the field still holds many unknowns and opportunities for discovery. Studying coordination chemistry with 3<i>d</i> metal ions and strategically modifying their inner structures may lead to new compounds with promising biological activities and selectivity. Overall, exploring thiosemicarbazones and isothiosemicarbazones as innovative pharmacological agents against cancer could unlock their full potential, significantly enhancing cancer treatment protocols and improving patient survival rates.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073680/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thiosemicarbazone-Based Compounds: Cancer Cell Inhibitors with Antioxidant Properties.\",\"authors\":\"Olga Garbuz, Emil Ceban, Dorin Istrati, Nadejda Railean, Ion Toderas, Aurelian Gulea\",\"doi\":\"10.3390/molecules30092077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiosemicarbazone-based compounds have attracted significant attention in recent years due to their potential as inhibitors of cancer cell proliferation. They not only exhibit strong antiproliferative effects but also possess antioxidant properties that are crucial in combating oxidative stress linked to cancer progression. This review highlights specific compounds that not only exhibit significantly higher antiproliferative activities but also demonstrate lower toxicity compared to traditional chemotherapy agents. This is important because it suggests that these compounds could provide better treatment options while reducing the side effects often associated with chemotherapy. A detailed analysis of the structure-activity relationships (SARs) reveals that the unique structural features of these compounds play a crucial role in their enhanced effectiveness. Understanding which molecular characteristics contribute to improved activity will be key for future compound design. The findings from this study emphasize the need for further exploration and development of these novel agents. By investigating their biological mechanisms and optimizing their structures, researchers can improve cancer treatment strategies, providing safer and more effective options for patients. Despite substantial previous research on thiosemicarbazones and isothiosemicarbazones, the field still holds many unknowns and opportunities for discovery. Studying coordination chemistry with 3<i>d</i> metal ions and strategically modifying their inner structures may lead to new compounds with promising biological activities and selectivity. Overall, exploring thiosemicarbazones and isothiosemicarbazones as innovative pharmacological agents against cancer could unlock their full potential, significantly enhancing cancer treatment protocols and improving patient survival rates.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073680/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30092077\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092077","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thiosemicarbazone-Based Compounds: Cancer Cell Inhibitors with Antioxidant Properties.
Thiosemicarbazone-based compounds have attracted significant attention in recent years due to their potential as inhibitors of cancer cell proliferation. They not only exhibit strong antiproliferative effects but also possess antioxidant properties that are crucial in combating oxidative stress linked to cancer progression. This review highlights specific compounds that not only exhibit significantly higher antiproliferative activities but also demonstrate lower toxicity compared to traditional chemotherapy agents. This is important because it suggests that these compounds could provide better treatment options while reducing the side effects often associated with chemotherapy. A detailed analysis of the structure-activity relationships (SARs) reveals that the unique structural features of these compounds play a crucial role in their enhanced effectiveness. Understanding which molecular characteristics contribute to improved activity will be key for future compound design. The findings from this study emphasize the need for further exploration and development of these novel agents. By investigating their biological mechanisms and optimizing their structures, researchers can improve cancer treatment strategies, providing safer and more effective options for patients. Despite substantial previous research on thiosemicarbazones and isothiosemicarbazones, the field still holds many unknowns and opportunities for discovery. Studying coordination chemistry with 3d metal ions and strategically modifying their inner structures may lead to new compounds with promising biological activities and selectivity. Overall, exploring thiosemicarbazones and isothiosemicarbazones as innovative pharmacological agents against cancer could unlock their full potential, significantly enhancing cancer treatment protocols and improving patient survival rates.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.