锂金属电池热事件监测的时空超分辨率。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-03-06 eCollection Date: 2025-05-01 DOI:10.1093/nsr/nwaf088
Chonghao Zhang, Zecong Liu, Zhoujie Lao, Yuting Zhou, Xiao Xiao, Tao Feng, Chengshuai Chang, Ruohui Wang, Guangmin Zhou, Xun Guan
{"title":"锂金属电池热事件监测的时空超分辨率。","authors":"Chonghao Zhang, Zecong Liu, Zhoujie Lao, Yuting Zhou, Xiao Xiao, Tao Feng, Chengshuai Chang, Ruohui Wang, Guangmin Zhou, Xun Guan","doi":"10.1093/nsr/nwaf088","DOIUrl":null,"url":null,"abstract":"<p><p>Safety challenges in high-capacity lithium metal batteries primarily arise from thermal runaway, leading to smoke emissions, fires or explosions. Real-time monitoring of internal temperature distribution is necessary to ensure safe operation and enhance cell performance. However, current methods lack dimensionality, precision, and timeliness, hindering the detection of uneven lithium deposition and localized temperature variations that drive capacity fade and safety risks. Here, we develop an <i>operando</i> spatiotemporal super-resolution thermal monitoring system capable of real-time, super-resolution temperature mapping across the lithium anode with a record-high spatial resolution of 1820 points cm<sup>-</sup>², and a temporal resolution of 1 frame per 3 seconds. Utilizing optical frequency-domain reflectometry, an Archimedean spiral fiber configuration, and super-resolution algorithms, we capture critical thermal variations and identify hotspots during cycling. To improve thermal uniformity and reduce safety risks, we apply protective strategies, including pyramid patterning, copper mesh and polylactic acid. Cells with these measures, as monitored by our system, show reduced average temperatures, delayed capacity degradation and fewer hotspots. This innovative monitoring approach not only integrates cutting-edge optical technology with energy storage diagnostics but also establishes a robust framework for assessing thermal management strategies, thus significantly advancing the safety and energy density of lithium metal batteries for sustainable energy applications.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf088"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987594/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Operando</i> spatiotemporal super-resolution of thermal events monitoring in lithium metal batteries.\",\"authors\":\"Chonghao Zhang, Zecong Liu, Zhoujie Lao, Yuting Zhou, Xiao Xiao, Tao Feng, Chengshuai Chang, Ruohui Wang, Guangmin Zhou, Xun Guan\",\"doi\":\"10.1093/nsr/nwaf088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Safety challenges in high-capacity lithium metal batteries primarily arise from thermal runaway, leading to smoke emissions, fires or explosions. Real-time monitoring of internal temperature distribution is necessary to ensure safe operation and enhance cell performance. However, current methods lack dimensionality, precision, and timeliness, hindering the detection of uneven lithium deposition and localized temperature variations that drive capacity fade and safety risks. Here, we develop an <i>operando</i> spatiotemporal super-resolution thermal monitoring system capable of real-time, super-resolution temperature mapping across the lithium anode with a record-high spatial resolution of 1820 points cm<sup>-</sup>², and a temporal resolution of 1 frame per 3 seconds. Utilizing optical frequency-domain reflectometry, an Archimedean spiral fiber configuration, and super-resolution algorithms, we capture critical thermal variations and identify hotspots during cycling. To improve thermal uniformity and reduce safety risks, we apply protective strategies, including pyramid patterning, copper mesh and polylactic acid. Cells with these measures, as monitored by our system, show reduced average temperatures, delayed capacity degradation and fewer hotspots. This innovative monitoring approach not only integrates cutting-edge optical technology with energy storage diagnostics but also establishes a robust framework for assessing thermal management strategies, thus significantly advancing the safety and energy density of lithium metal batteries for sustainable energy applications.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 5\",\"pages\":\"nwaf088\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwaf088\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf088","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大容量锂金属电池的安全挑战主要来自热失控,导致烟雾排放、火灾或爆炸。实时监测电池内部温度分布是保证电池安全运行和提高电池性能的必要条件。然而,目前的方法缺乏维度、精度和及时性,阻碍了对不均匀锂沉积和局部温度变化的检测,从而导致容量衰减和安全风险。在这里,我们开发了一个operando时空超分辨率热监测系统,能够实时、超分辨率地绘制横跨锂阳极的温度图,其空间分辨率达到1820点cm-²,时间分辨率为每3秒1帧。利用光频域反射计、阿基米德螺旋光纤配置和超分辨率算法,我们捕获了循环过程中的关键热变化并确定了热点。为了提高热均匀性和降低安全风险,我们采用了保护策略,包括金字塔图案,铜网和聚乳酸。在我们的系统监测下,采用这些措施的电池显示出平均温度降低、容量退化延迟和热点减少。这种创新的监测方法不仅将尖端的光学技术与储能诊断相结合,而且还建立了一个强大的热管理策略评估框架,从而显著提高了锂金属电池的安全性和能量密度,以实现可持续能源应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operando spatiotemporal super-resolution of thermal events monitoring in lithium metal batteries.

Safety challenges in high-capacity lithium metal batteries primarily arise from thermal runaway, leading to smoke emissions, fires or explosions. Real-time monitoring of internal temperature distribution is necessary to ensure safe operation and enhance cell performance. However, current methods lack dimensionality, precision, and timeliness, hindering the detection of uneven lithium deposition and localized temperature variations that drive capacity fade and safety risks. Here, we develop an operando spatiotemporal super-resolution thermal monitoring system capable of real-time, super-resolution temperature mapping across the lithium anode with a record-high spatial resolution of 1820 points cm-², and a temporal resolution of 1 frame per 3 seconds. Utilizing optical frequency-domain reflectometry, an Archimedean spiral fiber configuration, and super-resolution algorithms, we capture critical thermal variations and identify hotspots during cycling. To improve thermal uniformity and reduce safety risks, we apply protective strategies, including pyramid patterning, copper mesh and polylactic acid. Cells with these measures, as monitored by our system, show reduced average temperatures, delayed capacity degradation and fewer hotspots. This innovative monitoring approach not only integrates cutting-edge optical technology with energy storage diagnostics but also establishes a robust framework for assessing thermal management strategies, thus significantly advancing the safety and energy density of lithium metal batteries for sustainable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信