LOMDP:通过考虑用户表达意图来最大化社交网络中的期望意见。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-03-29 DOI:10.3390/e27040360
Xuan Wang, Bin Wu, Tong Wu
{"title":"LOMDP:通过考虑用户表达意图来最大化社交网络中的期望意见。","authors":"Xuan Wang, Bin Wu, Tong Wu","doi":"10.3390/e27040360","DOIUrl":null,"url":null,"abstract":"<p><p>To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies the uncertainty of users' expression intentions via entropy and effectively identifies the impact of silent nodes on the propagation process. Based on this, in terms of seed node selection, we develop the Limited Opinion Maximization algorithm for multi-stage seed selection, which dynamically optimizes the seed distribution among communities through a multi-stage seeding approach. In terms of node opinion changes, we establish the LODP dynamic opinion propagation model, reconstructing the node opinion update mechanism and explicitly modeling the entropy-increasing effect of silent nodes on the information propagation path. The experimental results on four datasets show that LOMDP outperforms six baseline algorithms. Our research effectively resolves the problem of maximizing desired opinions and offers insights into the dynamics of information propagation in social networks from the perspective of entropy and information theory.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025780/pdf/","citationCount":"0","resultStr":"{\"title\":\"LOMDP: Maximizing Desired Opinions in Social Networks by Considering User Expression Intentions.\",\"authors\":\"Xuan Wang, Bin Wu, Tong Wu\",\"doi\":\"10.3390/e27040360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies the uncertainty of users' expression intentions via entropy and effectively identifies the impact of silent nodes on the propagation process. Based on this, in terms of seed node selection, we develop the Limited Opinion Maximization algorithm for multi-stage seed selection, which dynamically optimizes the seed distribution among communities through a multi-stage seeding approach. In terms of node opinion changes, we establish the LODP dynamic opinion propagation model, reconstructing the node opinion update mechanism and explicitly modeling the entropy-increasing effect of silent nodes on the information propagation path. The experimental results on four datasets show that LOMDP outperforms six baseline algorithms. Our research effectively resolves the problem of maximizing desired opinions and offers insights into the dynamics of information propagation in social networks from the perspective of entropy and information theory.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040360\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040360","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决社交网络中期望意见最大化的问题,我们提出了基于信息熵理论的有限意见最大化动态传播优化框架。创新地引入节点表达能力的概念,通过熵量化用户表达意图的不确定性,有效识别沉默节点对传播过程的影响。在此基础上,在种子节点选择方面,提出了多阶段种子选择的有限意见最大化算法,通过多阶段播种方法动态优化种子在社区中的分布。针对节点意见变化,建立LODP动态意见传播模型,重构节点意见更新机制,明确建模沉默节点对信息传播路径的熵增效应。在4个数据集上的实验结果表明,LOMDP算法优于6种基准算法。我们的研究有效地解决了期望意见最大化的问题,并从熵和信息论的角度对社会网络中信息传播的动态进行了深入的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LOMDP: Maximizing Desired Opinions in Social Networks by Considering User Expression Intentions.

To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies the uncertainty of users' expression intentions via entropy and effectively identifies the impact of silent nodes on the propagation process. Based on this, in terms of seed node selection, we develop the Limited Opinion Maximization algorithm for multi-stage seed selection, which dynamically optimizes the seed distribution among communities through a multi-stage seeding approach. In terms of node opinion changes, we establish the LODP dynamic opinion propagation model, reconstructing the node opinion update mechanism and explicitly modeling the entropy-increasing effect of silent nodes on the information propagation path. The experimental results on four datasets show that LOMDP outperforms six baseline algorithms. Our research effectively resolves the problem of maximizing desired opinions and offers insights into the dynamics of information propagation in social networks from the perspective of entropy and information theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信