{"title":"LOMDP:通过考虑用户表达意图来最大化社交网络中的期望意见。","authors":"Xuan Wang, Bin Wu, Tong Wu","doi":"10.3390/e27040360","DOIUrl":null,"url":null,"abstract":"<p><p>To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies the uncertainty of users' expression intentions via entropy and effectively identifies the impact of silent nodes on the propagation process. Based on this, in terms of seed node selection, we develop the Limited Opinion Maximization algorithm for multi-stage seed selection, which dynamically optimizes the seed distribution among communities through a multi-stage seeding approach. In terms of node opinion changes, we establish the LODP dynamic opinion propagation model, reconstructing the node opinion update mechanism and explicitly modeling the entropy-increasing effect of silent nodes on the information propagation path. The experimental results on four datasets show that LOMDP outperforms six baseline algorithms. Our research effectively resolves the problem of maximizing desired opinions and offers insights into the dynamics of information propagation in social networks from the perspective of entropy and information theory.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025780/pdf/","citationCount":"0","resultStr":"{\"title\":\"LOMDP: Maximizing Desired Opinions in Social Networks by Considering User Expression Intentions.\",\"authors\":\"Xuan Wang, Bin Wu, Tong Wu\",\"doi\":\"10.3390/e27040360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies the uncertainty of users' expression intentions via entropy and effectively identifies the impact of silent nodes on the propagation process. Based on this, in terms of seed node selection, we develop the Limited Opinion Maximization algorithm for multi-stage seed selection, which dynamically optimizes the seed distribution among communities through a multi-stage seeding approach. In terms of node opinion changes, we establish the LODP dynamic opinion propagation model, reconstructing the node opinion update mechanism and explicitly modeling the entropy-increasing effect of silent nodes on the information propagation path. The experimental results on four datasets show that LOMDP outperforms six baseline algorithms. Our research effectively resolves the problem of maximizing desired opinions and offers insights into the dynamics of information propagation in social networks from the perspective of entropy and information theory.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040360\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040360","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
LOMDP: Maximizing Desired Opinions in Social Networks by Considering User Expression Intentions.
To address the problem of maximizing desired opinions in social networks, we present the Limited Opinion Maximization with Dynamic Propagation Optimization framework, which is grounded in information entropy theory. Innovatively, we introduce the concept of node expression capacity, which quantifies the uncertainty of users' expression intentions via entropy and effectively identifies the impact of silent nodes on the propagation process. Based on this, in terms of seed node selection, we develop the Limited Opinion Maximization algorithm for multi-stage seed selection, which dynamically optimizes the seed distribution among communities through a multi-stage seeding approach. In terms of node opinion changes, we establish the LODP dynamic opinion propagation model, reconstructing the node opinion update mechanism and explicitly modeling the entropy-increasing effect of silent nodes on the information propagation path. The experimental results on four datasets show that LOMDP outperforms six baseline algorithms. Our research effectively resolves the problem of maximizing desired opinions and offers insights into the dynamics of information propagation in social networks from the perspective of entropy and information theory.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.