Spyros Rigas, Michalis Papachristou, Ioannis Sotiropoulos, Georgios Alexandridis
{"title":"基于Kolmogorov-Arnold网络的旋转机械可解释故障分类与严重程度诊断。","authors":"Spyros Rigas, Michalis Papachristou, Ioannis Sotiropoulos, Georgios Alexandridis","doi":"10.3390/e27040403","DOIUrl":null,"url":null,"abstract":"<p><p>Rolling element bearings are critical components of rotating machinery, with their performance directly influencing the efficiency and reliability of industrial systems. At the same time, bearing faults are a leading cause of machinery failures, often resulting in costly downtime, reduced productivity, and, in extreme cases, catastrophic damage. This study presents a methodology that utilizes Kolmogorov-Arnold Networks-a recent deep learning alternative to Multilayer Perceptrons. The proposed method automatically selects the most relevant features from sensor data and searches for optimal hyper-parameters within a single unified approach. By using shallow network architectures and fewer features, the resulting models are lightweight, easily interpretable, and practical for real-time applications. Validated on two widely recognized datasets for bearing fault diagnosis, the framework achieved perfect F1-Scores for fault detection and high performance in fault and severity classification tasks, including 100% F1-Scores in most cases. Notably, it demonstrated adaptability by handling diverse fault types, such as imbalance and misalignment, within the same dataset. The availability of symbolic representations provided model interpretability, while feature attribution offered insights into the optimal feature types or signals for each studied task. These results highlight the framework's potential for practical applications, such as real-time machinery monitoring, and for scientific research requiring efficient and explainable models.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025949/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainable Fault Classification and Severity Diagnosis in Rotating Machinery Using Kolmogorov-Arnold Networks.\",\"authors\":\"Spyros Rigas, Michalis Papachristou, Ioannis Sotiropoulos, Georgios Alexandridis\",\"doi\":\"10.3390/e27040403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rolling element bearings are critical components of rotating machinery, with their performance directly influencing the efficiency and reliability of industrial systems. At the same time, bearing faults are a leading cause of machinery failures, often resulting in costly downtime, reduced productivity, and, in extreme cases, catastrophic damage. This study presents a methodology that utilizes Kolmogorov-Arnold Networks-a recent deep learning alternative to Multilayer Perceptrons. The proposed method automatically selects the most relevant features from sensor data and searches for optimal hyper-parameters within a single unified approach. By using shallow network architectures and fewer features, the resulting models are lightweight, easily interpretable, and practical for real-time applications. Validated on two widely recognized datasets for bearing fault diagnosis, the framework achieved perfect F1-Scores for fault detection and high performance in fault and severity classification tasks, including 100% F1-Scores in most cases. Notably, it demonstrated adaptability by handling diverse fault types, such as imbalance and misalignment, within the same dataset. The availability of symbolic representations provided model interpretability, while feature attribution offered insights into the optimal feature types or signals for each studied task. These results highlight the framework's potential for practical applications, such as real-time machinery monitoring, and for scientific research requiring efficient and explainable models.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025949/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040403\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040403","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Explainable Fault Classification and Severity Diagnosis in Rotating Machinery Using Kolmogorov-Arnold Networks.
Rolling element bearings are critical components of rotating machinery, with their performance directly influencing the efficiency and reliability of industrial systems. At the same time, bearing faults are a leading cause of machinery failures, often resulting in costly downtime, reduced productivity, and, in extreme cases, catastrophic damage. This study presents a methodology that utilizes Kolmogorov-Arnold Networks-a recent deep learning alternative to Multilayer Perceptrons. The proposed method automatically selects the most relevant features from sensor data and searches for optimal hyper-parameters within a single unified approach. By using shallow network architectures and fewer features, the resulting models are lightweight, easily interpretable, and practical for real-time applications. Validated on two widely recognized datasets for bearing fault diagnosis, the framework achieved perfect F1-Scores for fault detection and high performance in fault and severity classification tasks, including 100% F1-Scores in most cases. Notably, it demonstrated adaptability by handling diverse fault types, such as imbalance and misalignment, within the same dataset. The availability of symbolic representations provided model interpretability, while feature attribution offered insights into the optimal feature types or signals for each studied task. These results highlight the framework's potential for practical applications, such as real-time machinery monitoring, and for scientific research requiring efficient and explainable models.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.