Cristina Bayó, Giancarlo Castellano, Fátima Marín, Joaquín Castillo-Iturra, Teresa Ocaña, Hardeep Kumari, Maria Pellisé, Leticia Moreira, Liseth Rivero, Maria Daca-Alvarez, Oswaldo Ortiz, Sabela Carballal, Rebeca Moreira, Julia Canet-Hermida, Marta Pineda, Capella Gabriel, Georgina Flórez-Grau, Manel Juan, Daniel Benitez-Ribas, Francesc Balaguer
{"title":"Lynch综合征中框架移位衍生的新肽的发现和验证:为新的癌症预防策略铺平道路。","authors":"Cristina Bayó, Giancarlo Castellano, Fátima Marín, Joaquín Castillo-Iturra, Teresa Ocaña, Hardeep Kumari, Maria Pellisé, Leticia Moreira, Liseth Rivero, Maria Daca-Alvarez, Oswaldo Ortiz, Sabela Carballal, Rebeca Moreira, Julia Canet-Hermida, Marta Pineda, Capella Gabriel, Georgina Flórez-Grau, Manel Juan, Daniel Benitez-Ribas, Francesc Balaguer","doi":"10.1136/jitc-2024-011177","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lynch syndrome (LS), caused by germline pathogenic variants in the mismatch repair genes, leads to high rates of frameshift-derived neopeptide (FSDN) expression due to microsatellite instability (MSI). While colorectal cancer (CRC) prevention is effective, most LS-related tumors lack such strategies. Cancer vaccines targeting FSDNs offer a promising approach for immune interception in LS. This study aimed to identify and validate LS-related FSDNs to develop vaccines for cancer prevention.</p><p><strong>Methods: </strong>We identified LS-related coding MS mutations and predicted FSDN with high coverage on common Human Leukocyte Antigen (HLA)-I and II alleles. We validated FSDN-associated mutations in colorectal adenomas (CrAD), endometrial cancers (EC), and CRC samples from patients with LS, non-LS tumors, and cell lines. Immunogenicity was assessed through interferon (IFN)-γ enzyme-linked immunospot and flow cytometry analysis of tissue-infiltrating lymphocytes (TILs) from LS carriers.</p><p><strong>Results: </strong>We prioritized 53 HLA-I and 45 HLA-II FSDNs in MSI tumors using in silico predictions. Validation revealed 86.7% of FSDN-associated mutations present in LS-CRC samples, with a median of 7.67 (6.5-9) mutations in CrADs and 6.02 (2-10) in CRCs. Sequencing of CrAD and EC samples showed 95% and 77.5% of predicted FSDN-associated mutations, respectively. MSI cancer cell lines transcribed 69.8% of FSDNs. Immunogenicity assays showed that 71% of potential FSDNs elicited IFN-γ responses, with a median of 7.37 (1-10.75) HLA-I and 6 (2-5.75) HLA-II FSDNs per patient. After prioritizing 24 FSDN, in a cohort of 19 LS-derived samples (4 CrAD and 15 normal mucosa), 52% (10/19) demonstrated T-cell reactivity to an HLA-I neoantigen pool. CD8+CD137+ activation markers increased significantly (p=0.037) over time and peptide-specific cells were detected by pentamer staining.</p><p><strong>Conclusions: </strong>Our predicted FSDN set has optimal coverage among LS carriers and can induce IFN-γ inflammatory responses in LS-derived TILs, offering an opportunity for vaccine development.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 4","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery and validation of frameshift-derived neopeptides in Lynch syndrome: paving the way for novel cancer prevention strategies.\",\"authors\":\"Cristina Bayó, Giancarlo Castellano, Fátima Marín, Joaquín Castillo-Iturra, Teresa Ocaña, Hardeep Kumari, Maria Pellisé, Leticia Moreira, Liseth Rivero, Maria Daca-Alvarez, Oswaldo Ortiz, Sabela Carballal, Rebeca Moreira, Julia Canet-Hermida, Marta Pineda, Capella Gabriel, Georgina Flórez-Grau, Manel Juan, Daniel Benitez-Ribas, Francesc Balaguer\",\"doi\":\"10.1136/jitc-2024-011177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lynch syndrome (LS), caused by germline pathogenic variants in the mismatch repair genes, leads to high rates of frameshift-derived neopeptide (FSDN) expression due to microsatellite instability (MSI). While colorectal cancer (CRC) prevention is effective, most LS-related tumors lack such strategies. Cancer vaccines targeting FSDNs offer a promising approach for immune interception in LS. This study aimed to identify and validate LS-related FSDNs to develop vaccines for cancer prevention.</p><p><strong>Methods: </strong>We identified LS-related coding MS mutations and predicted FSDN with high coverage on common Human Leukocyte Antigen (HLA)-I and II alleles. We validated FSDN-associated mutations in colorectal adenomas (CrAD), endometrial cancers (EC), and CRC samples from patients with LS, non-LS tumors, and cell lines. Immunogenicity was assessed through interferon (IFN)-γ enzyme-linked immunospot and flow cytometry analysis of tissue-infiltrating lymphocytes (TILs) from LS carriers.</p><p><strong>Results: </strong>We prioritized 53 HLA-I and 45 HLA-II FSDNs in MSI tumors using in silico predictions. Validation revealed 86.7% of FSDN-associated mutations present in LS-CRC samples, with a median of 7.67 (6.5-9) mutations in CrADs and 6.02 (2-10) in CRCs. Sequencing of CrAD and EC samples showed 95% and 77.5% of predicted FSDN-associated mutations, respectively. MSI cancer cell lines transcribed 69.8% of FSDNs. Immunogenicity assays showed that 71% of potential FSDNs elicited IFN-γ responses, with a median of 7.37 (1-10.75) HLA-I and 6 (2-5.75) HLA-II FSDNs per patient. After prioritizing 24 FSDN, in a cohort of 19 LS-derived samples (4 CrAD and 15 normal mucosa), 52% (10/19) demonstrated T-cell reactivity to an HLA-I neoantigen pool. CD8+CD137+ activation markers increased significantly (p=0.037) over time and peptide-specific cells were detected by pentamer staining.</p><p><strong>Conclusions: </strong>Our predicted FSDN set has optimal coverage among LS carriers and can induce IFN-γ inflammatory responses in LS-derived TILs, offering an opportunity for vaccine development.</p>\",\"PeriodicalId\":14820,\"journal\":{\"name\":\"Journal for Immunotherapy of Cancer\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Immunotherapy of Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2024-011177\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-011177","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Discovery and validation of frameshift-derived neopeptides in Lynch syndrome: paving the way for novel cancer prevention strategies.
Background: Lynch syndrome (LS), caused by germline pathogenic variants in the mismatch repair genes, leads to high rates of frameshift-derived neopeptide (FSDN) expression due to microsatellite instability (MSI). While colorectal cancer (CRC) prevention is effective, most LS-related tumors lack such strategies. Cancer vaccines targeting FSDNs offer a promising approach for immune interception in LS. This study aimed to identify and validate LS-related FSDNs to develop vaccines for cancer prevention.
Methods: We identified LS-related coding MS mutations and predicted FSDN with high coverage on common Human Leukocyte Antigen (HLA)-I and II alleles. We validated FSDN-associated mutations in colorectal adenomas (CrAD), endometrial cancers (EC), and CRC samples from patients with LS, non-LS tumors, and cell lines. Immunogenicity was assessed through interferon (IFN)-γ enzyme-linked immunospot and flow cytometry analysis of tissue-infiltrating lymphocytes (TILs) from LS carriers.
Results: We prioritized 53 HLA-I and 45 HLA-II FSDNs in MSI tumors using in silico predictions. Validation revealed 86.7% of FSDN-associated mutations present in LS-CRC samples, with a median of 7.67 (6.5-9) mutations in CrADs and 6.02 (2-10) in CRCs. Sequencing of CrAD and EC samples showed 95% and 77.5% of predicted FSDN-associated mutations, respectively. MSI cancer cell lines transcribed 69.8% of FSDNs. Immunogenicity assays showed that 71% of potential FSDNs elicited IFN-γ responses, with a median of 7.37 (1-10.75) HLA-I and 6 (2-5.75) HLA-II FSDNs per patient. After prioritizing 24 FSDN, in a cohort of 19 LS-derived samples (4 CrAD and 15 normal mucosa), 52% (10/19) demonstrated T-cell reactivity to an HLA-I neoantigen pool. CD8+CD137+ activation markers increased significantly (p=0.037) over time and peptide-specific cells were detected by pentamer staining.
Conclusions: Our predicted FSDN set has optimal coverage among LS carriers and can induce IFN-γ inflammatory responses in LS-derived TILs, offering an opportunity for vaccine development.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.