金融中的熵辅助质量模式识别。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-16 DOI:10.3390/e27040430
Rishabh Gupta, Shivam Gupta, Jaskirat Singh, Sabre Kais
{"title":"金融中的熵辅助质量模式识别。","authors":"Rishabh Gupta, Shivam Gupta, Jaskirat Singh, Sabre Kais","doi":"10.3390/e27040430","DOIUrl":null,"url":null,"abstract":"<p><p>Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlapping patterns that exhibit consistent behavior over time. We ground our approach in the premise that historical patterns, when accurately clustered and pruned, can yield substantial predictive power for short-term price movements. To achieve this, we incorporate an entropy-based measure as a proxy for information gain: patterns that lead to high one-sided movements in historical data yet retain low local entropy are more \"informative\" in signaling future market direction. Compared to conventional clustering techniques such as K-means and Gaussian Mixture Models (GMMs), which often yield biased or unbalanced groupings, our approach emphasizes balance over a forced visual boundary, ensuring that quality patterns are not lost due to over-segmentation. By emphasizing both predictive purity (low local entropy) and historical profitability, our method achieves a balanced representation of Buy and Sell patterns, making it better suited for short-term algorithmic trading strategies. This paper offers an in-depth illustration of our entropy-assisted framework through two case studies on Gold vs. USD and GBPUSD. While these examples demonstrate the method's potential for extracting high-quality patterns, they do not constitute an exhaustive survey of all possible asset classes.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Entropy-Assisted Quality Pattern Identification in Finance.\",\"authors\":\"Rishabh Gupta, Shivam Gupta, Jaskirat Singh, Sabre Kais\",\"doi\":\"10.3390/e27040430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlapping patterns that exhibit consistent behavior over time. We ground our approach in the premise that historical patterns, when accurately clustered and pruned, can yield substantial predictive power for short-term price movements. To achieve this, we incorporate an entropy-based measure as a proxy for information gain: patterns that lead to high one-sided movements in historical data yet retain low local entropy are more \\\"informative\\\" in signaling future market direction. Compared to conventional clustering techniques such as K-means and Gaussian Mixture Models (GMMs), which often yield biased or unbalanced groupings, our approach emphasizes balance over a forced visual boundary, ensuring that quality patterns are not lost due to over-segmentation. By emphasizing both predictive purity (low local entropy) and historical profitability, our method achieves a balanced representation of Buy and Sell patterns, making it better suited for short-term algorithmic trading strategies. This paper offers an in-depth illustration of our entropy-assisted framework through two case studies on Gold vs. USD and GBPUSD. While these examples demonstrate the method's potential for extracting high-quality patterns, they do not constitute an exhaustive survey of all possible asset classes.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040430\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040430","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金融时间序列中的短期模式构成了许多算法交易策略的基石,然而从嘈杂的市场数据中可靠地提取这些模式仍然是一个艰巨的挑战。在本文中,我们提出了一个熵辅助框架,用于识别高质量的、非重叠的模式,这些模式随着时间的推移表现出一致的行为。我们的方法基于这样一个前提,即当历史模式被准确地聚集和修剪时,可以对短期价格走势产生实质性的预测能力。为了实现这一目标,我们将基于熵的度量作为信息增益的代理:导致历史数据中高单侧运动但保持低局部熵的模式在指示未来市场方向方面更具“信息性”。与K-means和高斯混合模型(gmm)等传统聚类技术(通常会产生偏差或不平衡的分组)相比,我们的方法强调在强制视觉边界上的平衡,确保质量模式不会因过度分割而丢失。通过强调预测纯度(低局部熵)和历史盈利能力,我们的方法实现了买入和卖出模式的平衡表示,使其更适合短期算法交易策略。本文通过对黄金兑美元和英镑兑美元的两个案例研究,深入阐述了我们的熵辅助框架。虽然这些示例展示了该方法在提取高质量模式方面的潜力,但它们并没有构成对所有可能的资产类别的详尽调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy-Assisted Quality Pattern Identification in Finance.

Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlapping patterns that exhibit consistent behavior over time. We ground our approach in the premise that historical patterns, when accurately clustered and pruned, can yield substantial predictive power for short-term price movements. To achieve this, we incorporate an entropy-based measure as a proxy for information gain: patterns that lead to high one-sided movements in historical data yet retain low local entropy are more "informative" in signaling future market direction. Compared to conventional clustering techniques such as K-means and Gaussian Mixture Models (GMMs), which often yield biased or unbalanced groupings, our approach emphasizes balance over a forced visual boundary, ensuring that quality patterns are not lost due to over-segmentation. By emphasizing both predictive purity (low local entropy) and historical profitability, our method achieves a balanced representation of Buy and Sell patterns, making it better suited for short-term algorithmic trading strategies. This paper offers an in-depth illustration of our entropy-assisted framework through two case studies on Gold vs. USD and GBPUSD. While these examples demonstrate the method's potential for extracting high-quality patterns, they do not constitute an exhaustive survey of all possible asset classes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信