矩形微通道中尺寸相关的声阻抗:临界粒子半径和多维场耦合效应。

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
ELECTROPHORESIS Pub Date : 2025-04-30 DOI:10.1002/elps.8151
Junjun Lei
{"title":"矩形微通道中尺寸相关的声阻抗:临界粒子半径和多维场耦合效应。","authors":"Junjun Lei","doi":"10.1002/elps.8151","DOIUrl":null,"url":null,"abstract":"<p><p>Particle manipulation using acoustophoresis has emerged as a pivotal technology in microsystems engineering, garnering significant attention across soft matter physics, biomedical diagnostics, and lab-on-a-chip applications. The operational efficacy of acoustofluidic tweezers platforms hinges on the precise control of the critical particle size threshold that governs the transition between radiation-force-dominated trapping and streaming-mediated transport. Through systematic numerical investigations in rectangular microchannels with two-dimensional (2D) confinement, this study establishes quantitative correlations between critical radius thresholds and geometric parameters in coupled standing-wave fields. The critical radius <math> <semantics><msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> <annotation>$r_p^c$</annotation></semantics> </math> demarcates two distinct transport regimes: (i) Supercritical particles ( <math> <semantics> <mrow><msub><mi>r</mi> <mi>p</mi></msub> <mo>></mo> <msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> </mrow> <annotation>${r}_p > r_p^c$</annotation></semantics> </math> ) achieve stable nodal trapping via dominant radiation forces, independent of initial spatial distribution; (ii) subcritical particles ( <math> <semantics> <mrow><msub><mi>r</mi> <mi>p</mi></msub> <mo><</mo> <msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> </mrow> <annotation>${r}_p < r_p^c$</annotation></semantics> </math> ) undergo continuous advection through streaming vortices. Our multiphysics framework combines finite element modeling with analytical validation through boundary-layer force equilibrium analysis, revealing three key findings: First, geometric confinement induces characteristic scaling laws ( <math> <semantics> <mrow><msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> <mo>∝</mo> <msqrt><mi>l</mi></msqrt> </mrow> <annotation>$r_p^c \\propto \\sqrt l $</annotation></semantics> </math> with <math><semantics><mi>l</mi> <annotation>$l$</annotation></semantics> </math> being the channel size) for one-dimensional (1D) standing waves, confirmed through parametric studies ( <math><semantics><mi>l</mi> <annotation>$l$</annotation></semantics> </math> : 0.1-5.1 mm). Second, 1D models maintain predictive accuracy (with discrepancies <math> <semantics><mrow><mi>γ</mi> <mo><</mo> <mn>5</mn> <mo>%</mo></mrow> <annotation>$\\gamma < 5\\% $</annotation></semantics> </math> ) for systems with wavelength ratios <math> <semantics> <mrow><msub><mi>λ</mi> <mi>y</mi></msub> <mo>/</mo> <msub><mi>λ</mi> <mi>x</mi></msub> <mo>></mo> <mn>4</mn></mrow> <annotation>${\\lambda }_y/{\\lambda }_x > 4$</annotation></semantics> </math> or <math> <semantics><mrow><mo><</mo> <mn>0.25</mn></mrow> <annotation>$ < 0.25$</annotation></semantics> </math> , but fail in coupled-mode fields ( <math> <semantics><mrow><mn>0.25</mn> <mspace></mspace> <mfrac><mo><</mo> <mo>∼</mo></mfrac> <mspace></mspace> <msub><mi>λ</mi> <mi>y</mi></msub> <mo>/</mo> <msub><mi>λ</mi> <mi>x</mi></msub> <mspace></mspace> <mfrac><mo><</mo> <mo>∼</mo></mfrac> <mspace></mspace> <mn>4</mn></mrow> <annotation>$0.25\\ {\\buildrel<\\over\\sim}\\ {\\lambda }_y/{\\lambda }_x\\ {\\buildrel<\\over\\sim}\\ 4$</annotation></semantics> </math> ) where maximum discrepancies reach <math> <semantics><mrow><mi>γ</mi> <mo>≈</mo> <mn>63</mn> <mo>%</mo></mrow> <annotation>$\\gamma \\approx 63\\% $</annotation></semantics> </math> . Third, orthogonal wave superposition in 2D configurations reduces <math> <semantics><msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> <annotation>$r_p^c$</annotation></semantics> </math> by suppressing streaming velocities, particularly at <math> <semantics> <mrow><msub><mi>λ</mi> <mi>y</mi></msub> <mo>=</mo> <msub><mi>λ</mi> <mi>x</mi></msub> </mrow> <annotation>${\\lambda }_y = {\\lambda }_x$</annotation></semantics> </math> . These insights advance fundamental understanding of size-selective acoustophoresis while providing engineering guidelines for performance optimization in acoustic tweezers design.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size-Dependent Acoustophoresis in Rectangular Microchannels: Critical Particle Radius and Multidimensional Field Coupling Effects.\",\"authors\":\"Junjun Lei\",\"doi\":\"10.1002/elps.8151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Particle manipulation using acoustophoresis has emerged as a pivotal technology in microsystems engineering, garnering significant attention across soft matter physics, biomedical diagnostics, and lab-on-a-chip applications. The operational efficacy of acoustofluidic tweezers platforms hinges on the precise control of the critical particle size threshold that governs the transition between radiation-force-dominated trapping and streaming-mediated transport. Through systematic numerical investigations in rectangular microchannels with two-dimensional (2D) confinement, this study establishes quantitative correlations between critical radius thresholds and geometric parameters in coupled standing-wave fields. The critical radius <math> <semantics><msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> <annotation>$r_p^c$</annotation></semantics> </math> demarcates two distinct transport regimes: (i) Supercritical particles ( <math> <semantics> <mrow><msub><mi>r</mi> <mi>p</mi></msub> <mo>></mo> <msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> </mrow> <annotation>${r}_p > r_p^c$</annotation></semantics> </math> ) achieve stable nodal trapping via dominant radiation forces, independent of initial spatial distribution; (ii) subcritical particles ( <math> <semantics> <mrow><msub><mi>r</mi> <mi>p</mi></msub> <mo><</mo> <msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> </mrow> <annotation>${r}_p < r_p^c$</annotation></semantics> </math> ) undergo continuous advection through streaming vortices. Our multiphysics framework combines finite element modeling with analytical validation through boundary-layer force equilibrium analysis, revealing three key findings: First, geometric confinement induces characteristic scaling laws ( <math> <semantics> <mrow><msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> <mo>∝</mo> <msqrt><mi>l</mi></msqrt> </mrow> <annotation>$r_p^c \\\\propto \\\\sqrt l $</annotation></semantics> </math> with <math><semantics><mi>l</mi> <annotation>$l$</annotation></semantics> </math> being the channel size) for one-dimensional (1D) standing waves, confirmed through parametric studies ( <math><semantics><mi>l</mi> <annotation>$l$</annotation></semantics> </math> : 0.1-5.1 mm). Second, 1D models maintain predictive accuracy (with discrepancies <math> <semantics><mrow><mi>γ</mi> <mo><</mo> <mn>5</mn> <mo>%</mo></mrow> <annotation>$\\\\gamma < 5\\\\% $</annotation></semantics> </math> ) for systems with wavelength ratios <math> <semantics> <mrow><msub><mi>λ</mi> <mi>y</mi></msub> <mo>/</mo> <msub><mi>λ</mi> <mi>x</mi></msub> <mo>></mo> <mn>4</mn></mrow> <annotation>${\\\\lambda }_y/{\\\\lambda }_x > 4$</annotation></semantics> </math> or <math> <semantics><mrow><mo><</mo> <mn>0.25</mn></mrow> <annotation>$ < 0.25$</annotation></semantics> </math> , but fail in coupled-mode fields ( <math> <semantics><mrow><mn>0.25</mn> <mspace></mspace> <mfrac><mo><</mo> <mo>∼</mo></mfrac> <mspace></mspace> <msub><mi>λ</mi> <mi>y</mi></msub> <mo>/</mo> <msub><mi>λ</mi> <mi>x</mi></msub> <mspace></mspace> <mfrac><mo><</mo> <mo>∼</mo></mfrac> <mspace></mspace> <mn>4</mn></mrow> <annotation>$0.25\\\\ {\\\\buildrel<\\\\over\\\\sim}\\\\ {\\\\lambda }_y/{\\\\lambda }_x\\\\ {\\\\buildrel<\\\\over\\\\sim}\\\\ 4$</annotation></semantics> </math> ) where maximum discrepancies reach <math> <semantics><mrow><mi>γ</mi> <mo>≈</mo> <mn>63</mn> <mo>%</mo></mrow> <annotation>$\\\\gamma \\\\approx 63\\\\% $</annotation></semantics> </math> . Third, orthogonal wave superposition in 2D configurations reduces <math> <semantics><msubsup><mi>r</mi> <mi>p</mi> <mi>c</mi></msubsup> <annotation>$r_p^c$</annotation></semantics> </math> by suppressing streaming velocities, particularly at <math> <semantics> <mrow><msub><mi>λ</mi> <mi>y</mi></msub> <mo>=</mo> <msub><mi>λ</mi> <mi>x</mi></msub> </mrow> <annotation>${\\\\lambda }_y = {\\\\lambda }_x$</annotation></semantics> </math> . These insights advance fundamental understanding of size-selective acoustophoresis while providing engineering guidelines for performance optimization in acoustic tweezers design.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/elps.8151\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.8151","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

利用声阻抗技术进行粒子操纵已经成为微系统工程中的一项关键技术,在软物质物理学、生物医学诊断和芯片实验室应用中引起了极大的关注。声流体镊子平台的运行效率取决于对临界粒径阈值的精确控制,该阈值控制着辐射力主导的捕获和流介导的传输之间的过渡。通过对二维约束矩形微通道的系统数值研究,建立了耦合驻波场中临界半径阈值与几何参数之间的定量相关性。临界半径r p c $r_p^c$划定了两种不同的输运机制:(i)超临界粒子(r p > r p c ${r}_p > r_p^c$)通过主导辐射力实现稳定的节点捕获,与初始空间分布无关;(ii)亚临界粒子(r p r p c ${r}_p < r_p^c$)通过流涡连续平流。我们的多物理场框架将有限元建模与通过边界层力平衡分析进行的分析验证相结合,揭示了三个关键发现:首先,几何约束导致一维驻波的特征标度定律(r p c∝l $r_p^c \propto \sqrt l $, l $l$为通道尺寸),并通过参数研究(l $l$: 0.1-5.1 mm)得到证实。其次,一维模型保持预测精度(差异γ 5) % $\gamma < 5\% $ ) for systems with wavelength ratios λ y / λ x > 4 ${\lambda }_y/{\lambda }_x > 4$ or 0.25 $ < 0.25$ , but fail in coupled-mode fields ( 0.25 ∼ λ y / λ x ∼ 4 $0.25\ {\buildrel ) where maximum discrepancies reach γ ≈ 63 % $\gamma \approx 63\% $ . Third, orthogonal wave superposition in 2D configurations reduces r p c $r_p^c$ by suppressing streaming velocities, particularly at λ y = λ x ${\lambda }_y = {\lambda }_x$ . These insights advance fundamental understanding of size-selective acoustophoresis while providing engineering guidelines for performance optimization in acoustic tweezers design.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size-Dependent Acoustophoresis in Rectangular Microchannels: Critical Particle Radius and Multidimensional Field Coupling Effects.

Particle manipulation using acoustophoresis has emerged as a pivotal technology in microsystems engineering, garnering significant attention across soft matter physics, biomedical diagnostics, and lab-on-a-chip applications. The operational efficacy of acoustofluidic tweezers platforms hinges on the precise control of the critical particle size threshold that governs the transition between radiation-force-dominated trapping and streaming-mediated transport. Through systematic numerical investigations in rectangular microchannels with two-dimensional (2D) confinement, this study establishes quantitative correlations between critical radius thresholds and geometric parameters in coupled standing-wave fields. The critical radius r p c $r_p^c$ demarcates two distinct transport regimes: (i) Supercritical particles ( r p > r p c ${r}_p > r_p^c$ ) achieve stable nodal trapping via dominant radiation forces, independent of initial spatial distribution; (ii) subcritical particles ( r p < r p c ${r}_p < r_p^c$ ) undergo continuous advection through streaming vortices. Our multiphysics framework combines finite element modeling with analytical validation through boundary-layer force equilibrium analysis, revealing three key findings: First, geometric confinement induces characteristic scaling laws ( r p c l $r_p^c \propto \sqrt l $ with l $l$ being the channel size) for one-dimensional (1D) standing waves, confirmed through parametric studies ( l $l$ : 0.1-5.1 mm). Second, 1D models maintain predictive accuracy (with discrepancies γ < 5 % $\gamma < 5\% $ ) for systems with wavelength ratios λ y / λ x > 4 ${\lambda }_y/{\lambda }_x > 4$ or < 0.25 $ < 0.25$ , but fail in coupled-mode fields ( 0.25 < λ y / λ x < 4 $0.25\ {\buildrel<\over\sim}\ {\lambda }_y/{\lambda }_x\ {\buildrel<\over\sim}\ 4$ ) where maximum discrepancies reach γ 63 % $\gamma \approx 63\% $ . Third, orthogonal wave superposition in 2D configurations reduces r p c $r_p^c$ by suppressing streaming velocities, particularly at λ y = λ x ${\lambda }_y = {\lambda }_x$ . These insights advance fundamental understanding of size-selective acoustophoresis while providing engineering guidelines for performance optimization in acoustic tweezers design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信