{"title":"粒细胞-巨噬细胞集落刺激因子在对抗真菌感染中的机制见解:多种真菌病原体。","authors":"Qi Dong, Weiwei Wu, Ruijun Zhang","doi":"10.1093/mmy/myaf044","DOIUrl":null,"url":null,"abstract":"<p><p>Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used for its immunomodulatory properties to enhance therapeutic outcomes and improve cure rates in fungal infections. However, the mechanisms of GM-CSF action in various fungal infections have not been systematically summarized in current literature, and the reliability and broad effectiveness of clinical data remain uncertain. This review provides a comprehensive analysis of how GM-CSF supports host defense against infections caused by specific fungal pathogens. These pathogens include yeasts (Candida spp., Cryptococcus spp.), filamentous fungi (Aspergillus spp., Mucorales, dematiaceous fungi), and thermally dimorphic fungi (Histoplasma capsulatum, Talaromyces marneffei, Paracoccidioides brasiliensis, and Blastomyces dermatitidis). These insights underscore the potential of GM-CSF as a promising adjunctive therapy in combating challenging fungal infections.</p>","PeriodicalId":18586,"journal":{"name":"Medical mycology","volume":"63 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into granulocyte-macrophage colony-stimulating factor in combating fungal infections: Diverse fungal pathogens.\",\"authors\":\"Qi Dong, Weiwei Wu, Ruijun Zhang\",\"doi\":\"10.1093/mmy/myaf044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used for its immunomodulatory properties to enhance therapeutic outcomes and improve cure rates in fungal infections. However, the mechanisms of GM-CSF action in various fungal infections have not been systematically summarized in current literature, and the reliability and broad effectiveness of clinical data remain uncertain. This review provides a comprehensive analysis of how GM-CSF supports host defense against infections caused by specific fungal pathogens. These pathogens include yeasts (Candida spp., Cryptococcus spp.), filamentous fungi (Aspergillus spp., Mucorales, dematiaceous fungi), and thermally dimorphic fungi (Histoplasma capsulatum, Talaromyces marneffei, Paracoccidioides brasiliensis, and Blastomyces dermatitidis). These insights underscore the potential of GM-CSF as a promising adjunctive therapy in combating challenging fungal infections.</p>\",\"PeriodicalId\":18586,\"journal\":{\"name\":\"Medical mycology\",\"volume\":\"63 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical mycology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/mmy/myaf044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical mycology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mmy/myaf044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Mechanistic insights into granulocyte-macrophage colony-stimulating factor in combating fungal infections: Diverse fungal pathogens.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used for its immunomodulatory properties to enhance therapeutic outcomes and improve cure rates in fungal infections. However, the mechanisms of GM-CSF action in various fungal infections have not been systematically summarized in current literature, and the reliability and broad effectiveness of clinical data remain uncertain. This review provides a comprehensive analysis of how GM-CSF supports host defense against infections caused by specific fungal pathogens. These pathogens include yeasts (Candida spp., Cryptococcus spp.), filamentous fungi (Aspergillus spp., Mucorales, dematiaceous fungi), and thermally dimorphic fungi (Histoplasma capsulatum, Talaromyces marneffei, Paracoccidioides brasiliensis, and Blastomyces dermatitidis). These insights underscore the potential of GM-CSF as a promising adjunctive therapy in combating challenging fungal infections.
期刊介绍:
Medical Mycology is a peer-reviewed international journal that focuses on original and innovative basic and applied studies, as well as learned reviews on all aspects of medical, veterinary and environmental mycology as related to disease. The objective is to present the highest quality scientific reports from throughout the world on divergent topics. These topics include the phylogeny of fungal pathogens, epidemiology and public health mycology themes, new approaches in the diagnosis and treatment of mycoses including clinical trials and guidelines, pharmacology and antifungal susceptibilities, changes in taxonomy, description of new or unusual fungi associated with human or animal disease, immunology of fungal infections, vaccinology for prevention of fungal infections, pathogenesis and virulence, and the molecular biology of pathogenic fungi in vitro and in vivo, including genomics, transcriptomics, metabolomics, and proteomics. Case reports are no longer accepted. In addition, studies of natural products showing inhibitory activity against pathogenic fungi are not accepted without chemical characterization and identification of the compounds responsible for the inhibitory activity.