CCAAT/增强子结合蛋白α和β通过剂量和阶段依赖机制调节排卵和基因表达。

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Hanxue Zhang, Rainer B Lanz, Jimmy Dhillon, Paul D Soloway, Bo Shui, Yi Athena Ren
{"title":"CCAAT/增强子结合蛋白α和β通过剂量和阶段依赖机制调节排卵和基因表达。","authors":"Hanxue Zhang, Rainer B Lanz, Jimmy Dhillon, Paul D Soloway, Bo Shui, Yi Athena Ren","doi":"10.1210/endocr/bqaf081","DOIUrl":null,"url":null,"abstract":"<p><p>The preovulatory luteinizing hormone (LH) surge orchestrates complex cellular and molecular events leading to ovulation. CCAAT/enhancer-binding proteins α and β (C/EBPα/β) are transcription factors acutely induced by the LH surge and crucial for ovulation and granulosa cell luteinization. However, biological processes (BPs) and their regulatory mechanisms downstream of C/EBPα/β in the preovulatory ovary are not completely understood. To address this knowledge gap, we generated Cebpa/bfl/fl;Pgr-Cre mutants and compared them with Cebpa/bfl/fl;Cyp19a1-Cre mutant female mice: Cebpa/bfl/fl;Cyp19a1-Cre mutants have undetectable levels of C/EBPα/β throughout the preovulatory stages and do not ovulate, aligning with previous reports; and Cebpa/bfl/fl;Pgr-Cre mutants present gradual depletion of C/EBPα/β during the late preovulatory stage and a reduced ovulation rate. Comparison of these two models indicates that sustained expression of C/EBPα/β throughout the preovulatory stages is necessary for successful ovulation and provides a unique opportunity to interrogate gene regulatory mechanisms by C/EBPα/β during different preovulatory time windows and the effect of dysregulating C/EBPα/β on ovulation-associated BPs. Our study revealed that C/EBPα/β regulate gene expression and distinct biological functions such as vascular remodeling via dose- and preovulatory stage-dependent mechanisms. These findings shed new light on the intricate mechanisms of gene regulation by C/EBPα/β downstream of the LH surge.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086141/pdf/","citationCount":"0","resultStr":"{\"title\":\"CCAAT/Enhancer-Binding Proteins α and β Regulate Ovulation and Gene Expression via Dose- and Stage-Dependent Mechanisms.\",\"authors\":\"Hanxue Zhang, Rainer B Lanz, Jimmy Dhillon, Paul D Soloway, Bo Shui, Yi Athena Ren\",\"doi\":\"10.1210/endocr/bqaf081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The preovulatory luteinizing hormone (LH) surge orchestrates complex cellular and molecular events leading to ovulation. CCAAT/enhancer-binding proteins α and β (C/EBPα/β) are transcription factors acutely induced by the LH surge and crucial for ovulation and granulosa cell luteinization. However, biological processes (BPs) and their regulatory mechanisms downstream of C/EBPα/β in the preovulatory ovary are not completely understood. To address this knowledge gap, we generated Cebpa/bfl/fl;Pgr-Cre mutants and compared them with Cebpa/bfl/fl;Cyp19a1-Cre mutant female mice: Cebpa/bfl/fl;Cyp19a1-Cre mutants have undetectable levels of C/EBPα/β throughout the preovulatory stages and do not ovulate, aligning with previous reports; and Cebpa/bfl/fl;Pgr-Cre mutants present gradual depletion of C/EBPα/β during the late preovulatory stage and a reduced ovulation rate. Comparison of these two models indicates that sustained expression of C/EBPα/β throughout the preovulatory stages is necessary for successful ovulation and provides a unique opportunity to interrogate gene regulatory mechanisms by C/EBPα/β during different preovulatory time windows and the effect of dysregulating C/EBPα/β on ovulation-associated BPs. Our study revealed that C/EBPα/β regulate gene expression and distinct biological functions such as vascular remodeling via dose- and preovulatory stage-dependent mechanisms. These findings shed new light on the intricate mechanisms of gene regulation by C/EBPα/β downstream of the LH surge.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086141/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqaf081\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf081","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

排卵前黄体生成素激增协调复杂的细胞和分子事件导致排卵。CCAAT/增强子结合蛋白α和β (C/EBPα/β)是黄体生成素激增急性诱导的转录因子,对排卵和颗粒细胞黄体生成素至关重要。然而,排卵前卵巢中C/EBPα/β下游的生物学过程及其调控机制尚不完全清楚。为了解决这一知识差距,我们生成了Cebpa/bfl/fl;Pgr-Cre突变体,并将其与Cebpa/bfl/fl;Cyp19a1-Cre突变雌性小鼠进行了比较:Cebpa/bfl/fl;Cyp19a1-Cre突变体在整个排卵期都检测不到C/EBPα/β水平,并且不排卵,与先前的报道一致;Pgr-Cre突变体在排卵期晚期C/EBPα/β逐渐减少,排卵率降低。这两种模型的比较表明,C/EBPα/β在排卵期持续表达是成功排卵的必要条件,这为探究C/EBPα/β在不同排卵期的基因调控机制以及C/EBPα/β失调对排卵相关生物学过程的影响提供了独特的机会。我们的研究表明,C/EBPα/β通过剂量依赖性和排卵期前依赖性机制调节基因表达和血管重塑等不同的生物学功能。这些发现揭示了生成素激增下游C/EBPα/β基因调控的复杂机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CCAAT/Enhancer-Binding Proteins α and β Regulate Ovulation and Gene Expression via Dose- and Stage-Dependent Mechanisms.

The preovulatory luteinizing hormone (LH) surge orchestrates complex cellular and molecular events leading to ovulation. CCAAT/enhancer-binding proteins α and β (C/EBPα/β) are transcription factors acutely induced by the LH surge and crucial for ovulation and granulosa cell luteinization. However, biological processes (BPs) and their regulatory mechanisms downstream of C/EBPα/β in the preovulatory ovary are not completely understood. To address this knowledge gap, we generated Cebpa/bfl/fl;Pgr-Cre mutants and compared them with Cebpa/bfl/fl;Cyp19a1-Cre mutant female mice: Cebpa/bfl/fl;Cyp19a1-Cre mutants have undetectable levels of C/EBPα/β throughout the preovulatory stages and do not ovulate, aligning with previous reports; and Cebpa/bfl/fl;Pgr-Cre mutants present gradual depletion of C/EBPα/β during the late preovulatory stage and a reduced ovulation rate. Comparison of these two models indicates that sustained expression of C/EBPα/β throughout the preovulatory stages is necessary for successful ovulation and provides a unique opportunity to interrogate gene regulatory mechanisms by C/EBPα/β during different preovulatory time windows and the effect of dysregulating C/EBPα/β on ovulation-associated BPs. Our study revealed that C/EBPα/β regulate gene expression and distinct biological functions such as vascular remodeling via dose- and preovulatory stage-dependent mechanisms. These findings shed new light on the intricate mechanisms of gene regulation by C/EBPα/β downstream of the LH surge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信