{"title":"对胶质瘤中热休克蛋白的综合分析揭示了其与胶质瘤相关髓样细胞的关联。","authors":"Jiacheng Xu, Yuduo Guo, Weihai Ning, Jun Wang, Yujia Chen, Deshan Liu, Jingjing Yang, Yongmei Song, Hongwei Zhang","doi":"10.1038/s41435-025-00327-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the central nervous system, glioma stands as the predominant primary brain tumor. Heat shock proteins exerted a critical influence on tumor progression and tumor immune microenvironment. However, research on heat shock proteins in glioma remained ambiguous. We analyzed data from the CPTAC, TCGA, and GTEx databases, identifying seven heat shock protein genes critical to glioma prognosis. Subsequently, through Lasso regression, a model based on heat shock protein genes (DNAJC7, DNAJC12, HSPB2, HSP90B1, HSPA5) was constructed. And the risk score showed a positive correlation to the immune score. Further investigation into immune cells revealed that HSPA5 and HSP90B1 were expressed at higher levels in glioma and significantly linked to M2 macrophage infiltration. Considering the limited research on HSP90B1 in glioma, we further revealed that HSP90B1 might have a connection with two crucial signaling pathways within tumors: PI3K/AKT and Wnt/β-catenin. Given that lactate could promote the M2 polarization of macrophages, we further found that HSP90B1 could enhance the transcription of glycolysis-related genes, including LDHA. Overall, our study demonstrated that heat shock protein genes were significantly linked to glioma patient prognosis. Additionally, we observed that HSP90B1 had a significant relationship with M2 macrophage infiltration and potentially regulated LDHA level in glioma.</p>","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":" ","pages":"200-212"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170335/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of heat shock proteins in glioma revealed the association with glioma-associated myeloid cells.\",\"authors\":\"Jiacheng Xu, Yuduo Guo, Weihai Ning, Jun Wang, Yujia Chen, Deshan Liu, Jingjing Yang, Yongmei Song, Hongwei Zhang\",\"doi\":\"10.1038/s41435-025-00327-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the central nervous system, glioma stands as the predominant primary brain tumor. Heat shock proteins exerted a critical influence on tumor progression and tumor immune microenvironment. However, research on heat shock proteins in glioma remained ambiguous. We analyzed data from the CPTAC, TCGA, and GTEx databases, identifying seven heat shock protein genes critical to glioma prognosis. Subsequently, through Lasso regression, a model based on heat shock protein genes (DNAJC7, DNAJC12, HSPB2, HSP90B1, HSPA5) was constructed. And the risk score showed a positive correlation to the immune score. Further investigation into immune cells revealed that HSPA5 and HSP90B1 were expressed at higher levels in glioma and significantly linked to M2 macrophage infiltration. Considering the limited research on HSP90B1 in glioma, we further revealed that HSP90B1 might have a connection with two crucial signaling pathways within tumors: PI3K/AKT and Wnt/β-catenin. Given that lactate could promote the M2 polarization of macrophages, we further found that HSP90B1 could enhance the transcription of glycolysis-related genes, including LDHA. Overall, our study demonstrated that heat shock protein genes were significantly linked to glioma patient prognosis. Additionally, we observed that HSP90B1 had a significant relationship with M2 macrophage infiltration and potentially regulated LDHA level in glioma.</p>\",\"PeriodicalId\":12691,\"journal\":{\"name\":\"Genes and immunity\",\"volume\":\" \",\"pages\":\"200-212\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170335/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41435-025-00327-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41435-025-00327-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Comprehensive analysis of heat shock proteins in glioma revealed the association with glioma-associated myeloid cells.
In the central nervous system, glioma stands as the predominant primary brain tumor. Heat shock proteins exerted a critical influence on tumor progression and tumor immune microenvironment. However, research on heat shock proteins in glioma remained ambiguous. We analyzed data from the CPTAC, TCGA, and GTEx databases, identifying seven heat shock protein genes critical to glioma prognosis. Subsequently, through Lasso regression, a model based on heat shock protein genes (DNAJC7, DNAJC12, HSPB2, HSP90B1, HSPA5) was constructed. And the risk score showed a positive correlation to the immune score. Further investigation into immune cells revealed that HSPA5 and HSP90B1 were expressed at higher levels in glioma and significantly linked to M2 macrophage infiltration. Considering the limited research on HSP90B1 in glioma, we further revealed that HSP90B1 might have a connection with two crucial signaling pathways within tumors: PI3K/AKT and Wnt/β-catenin. Given that lactate could promote the M2 polarization of macrophages, we further found that HSP90B1 could enhance the transcription of glycolysis-related genes, including LDHA. Overall, our study demonstrated that heat shock protein genes were significantly linked to glioma patient prognosis. Additionally, we observed that HSP90B1 had a significant relationship with M2 macrophage infiltration and potentially regulated LDHA level in glioma.
期刊介绍:
Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.