Vanessa Krémer, Marion Rambault, Sandrine Schmutz, Nicolas Montcuquet, Pierre Bruhns, Luc de Chaisemartin, Friederike Jönsson
{"title":"利用33色光谱流式细胞仪对人全血中性粒细胞进行深度表型分析。","authors":"Vanessa Krémer, Marion Rambault, Sandrine Schmutz, Nicolas Montcuquet, Pierre Bruhns, Luc de Chaisemartin, Friederike Jönsson","doi":"10.1093/jleuko/qiaf049","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are the most abundant leukocytes in the circulation and critical players in host defense and inflammation. They respond rapidly to numerous biological, chemical, and physical stimuli, making it challenging to characterize their steady-state phenotypes, activation states, and subsets in an unbiased and precise manner. To address this problem, we designed a 33-color spectral flow cytometry panel for the deep profiling of unprocessed neutrophils in human blood. This panel allows the profiling of neutrophil phenotypes related to activation, immune modulation, granule release, ontogeny, phagocytic capacity, and migration, in addition to monitoring all major human leukocyte populations. We validated the panel using whole blood stimulations that induce distinct phenotypic shifts in the neutrophil population. This optimized spectral flow cytometry panel allows comprehensive immune profiling of the functional heterogeneity of human blood neutrophils and is suitable for longitudinal or exploratory analysis of neutrophil dynamics and activation states in clinical cohorts.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep phenotyping of human neutrophils in whole blood using a 33-color spectral flow cytometry panel.\",\"authors\":\"Vanessa Krémer, Marion Rambault, Sandrine Schmutz, Nicolas Montcuquet, Pierre Bruhns, Luc de Chaisemartin, Friederike Jönsson\",\"doi\":\"10.1093/jleuko/qiaf049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutrophils are the most abundant leukocytes in the circulation and critical players in host defense and inflammation. They respond rapidly to numerous biological, chemical, and physical stimuli, making it challenging to characterize their steady-state phenotypes, activation states, and subsets in an unbiased and precise manner. To address this problem, we designed a 33-color spectral flow cytometry panel for the deep profiling of unprocessed neutrophils in human blood. This panel allows the profiling of neutrophil phenotypes related to activation, immune modulation, granule release, ontogeny, phagocytic capacity, and migration, in addition to monitoring all major human leukocyte populations. We validated the panel using whole blood stimulations that induce distinct phenotypic shifts in the neutrophil population. This optimized spectral flow cytometry panel allows comprehensive immune profiling of the functional heterogeneity of human blood neutrophils and is suitable for longitudinal or exploratory analysis of neutrophil dynamics and activation states in clinical cohorts.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiaf049\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiaf049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Deep phenotyping of human neutrophils in whole blood using a 33-color spectral flow cytometry panel.
Neutrophils are the most abundant leukocytes in the circulation and critical players in host defense and inflammation. They respond rapidly to numerous biological, chemical, and physical stimuli, making it challenging to characterize their steady-state phenotypes, activation states, and subsets in an unbiased and precise manner. To address this problem, we designed a 33-color spectral flow cytometry panel for the deep profiling of unprocessed neutrophils in human blood. This panel allows the profiling of neutrophil phenotypes related to activation, immune modulation, granule release, ontogeny, phagocytic capacity, and migration, in addition to monitoring all major human leukocyte populations. We validated the panel using whole blood stimulations that induce distinct phenotypic shifts in the neutrophil population. This optimized spectral flow cytometry panel allows comprehensive immune profiling of the functional heterogeneity of human blood neutrophils and is suitable for longitudinal or exploratory analysis of neutrophil dynamics and activation states in clinical cohorts.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.