Qingfu Zhang, Jianyao Su, Zhichao Li, Su Han, Chuanhe Wang, Zhijun Sun
{"title":"偏位体作为细胞间信使:在病理机制、临床疾病诊断和治疗中的潜力。","authors":"Qingfu Zhang, Jianyao Su, Zhichao Li, Su Han, Chuanhe Wang, Zhijun Sun","doi":"10.1186/s12951-025-03362-6","DOIUrl":null,"url":null,"abstract":"<p><p>Migrasomes are newly identified organelles that were first discovered in 2015. Since then, their biological structure, formation process, and physiological functions have been gradually elucidated. Research in recent years has expanded our understanding of these aspects, highlighting their significance in various physiological and pathological processes. Migrasomes have been found to play crucial roles in normal physiological functions, including embryonic development, vascular homeostasis, material transport, and mitochondrial quality control. Additionally, emerging evidence suggests their involvement in various diseases; however, clinical research on their roles remains limited. Current studies indicate that migrasomes may contribute to disease pathogenesis and hold potential for diagnostic and therapeutic applications. This review consolidates existing clinical research on migrasomes, focusing on their role in disease mechanisms and their use in medical applications. By examining their biological structure and function, this review aims to generate insights that encourage further research, ultimately contributing to advancements in disease prevention and treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"302"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009535/pdf/","citationCount":"0","resultStr":"{\"title\":\"Migrasomes as intercellular messengers: potential in the pathological mechanism, diagnosis and treatment of clinical diseases.\",\"authors\":\"Qingfu Zhang, Jianyao Su, Zhichao Li, Su Han, Chuanhe Wang, Zhijun Sun\",\"doi\":\"10.1186/s12951-025-03362-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Migrasomes are newly identified organelles that were first discovered in 2015. Since then, their biological structure, formation process, and physiological functions have been gradually elucidated. Research in recent years has expanded our understanding of these aspects, highlighting their significance in various physiological and pathological processes. Migrasomes have been found to play crucial roles in normal physiological functions, including embryonic development, vascular homeostasis, material transport, and mitochondrial quality control. Additionally, emerging evidence suggests their involvement in various diseases; however, clinical research on their roles remains limited. Current studies indicate that migrasomes may contribute to disease pathogenesis and hold potential for diagnostic and therapeutic applications. This review consolidates existing clinical research on migrasomes, focusing on their role in disease mechanisms and their use in medical applications. By examining their biological structure and function, this review aims to generate insights that encourage further research, ultimately contributing to advancements in disease prevention and treatment.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"302\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009535/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03362-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03362-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Migrasomes as intercellular messengers: potential in the pathological mechanism, diagnosis and treatment of clinical diseases.
Migrasomes are newly identified organelles that were first discovered in 2015. Since then, their biological structure, formation process, and physiological functions have been gradually elucidated. Research in recent years has expanded our understanding of these aspects, highlighting their significance in various physiological and pathological processes. Migrasomes have been found to play crucial roles in normal physiological functions, including embryonic development, vascular homeostasis, material transport, and mitochondrial quality control. Additionally, emerging evidence suggests their involvement in various diseases; however, clinical research on their roles remains limited. Current studies indicate that migrasomes may contribute to disease pathogenesis and hold potential for diagnostic and therapeutic applications. This review consolidates existing clinical research on migrasomes, focusing on their role in disease mechanisms and their use in medical applications. By examining their biological structure and function, this review aims to generate insights that encourage further research, ultimately contributing to advancements in disease prevention and treatment.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.