使用贝叶斯混合模型建立可解释的预期目标模型。

IF 2.3 Q2 SPORT SCIENCES
Frontiers in Sports and Active Living Pub Date : 2025-04-23 eCollection Date: 2025-01-01 DOI:10.3389/fspor.2025.1504362
Loïc Iapteff, Sebastian Le Coz, Maxime Rioland, Titouan Houde, Christopher Carling, Frank Imbach
{"title":"使用贝叶斯混合模型建立可解释的预期目标模型。","authors":"Loïc Iapteff, Sebastian Le Coz, Maxime Rioland, Titouan Houde, Christopher Carling, Frank Imbach","doi":"10.3389/fspor.2025.1504362","DOIUrl":null,"url":null,"abstract":"<p><p>Empowered by technological progress, sports teams and bookmakers strive to understand relationships between player and team activity and match outcomes. For this purpose, the probability of an event to succeed (e.g., the probability of a goal to be scored, namely, xG for eXpected Goals) provides insightful information on team and player performance and helps statistical and machine learning approaches predict match outcomes. However, recent approaches require powerful but complex models that need more inherent interpretability for practitioners. This study uses a Bayesian generalized linear mixed-effects model to introduce a simple and interpretable xG modeling approach. The model provided similar performance when compared to the StatsBomb model (property of the StatsBomb company) using only seven variables relating to shot type and position, and surrounding opponents (AUC = 0.781 and 0.801, respectively). Pre-trained models through transfer learning are suitable for identifying teams' strengths and weaknesses using small sample sizes and enable interpretation of the model's predictions.</p>","PeriodicalId":12716,"journal":{"name":"Frontiers in Sports and Active Living","volume":"7 ","pages":"1504362"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward interpretable expected goals modeling using Bayesian mixed models.\",\"authors\":\"Loïc Iapteff, Sebastian Le Coz, Maxime Rioland, Titouan Houde, Christopher Carling, Frank Imbach\",\"doi\":\"10.3389/fspor.2025.1504362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Empowered by technological progress, sports teams and bookmakers strive to understand relationships between player and team activity and match outcomes. For this purpose, the probability of an event to succeed (e.g., the probability of a goal to be scored, namely, xG for eXpected Goals) provides insightful information on team and player performance and helps statistical and machine learning approaches predict match outcomes. However, recent approaches require powerful but complex models that need more inherent interpretability for practitioners. This study uses a Bayesian generalized linear mixed-effects model to introduce a simple and interpretable xG modeling approach. The model provided similar performance when compared to the StatsBomb model (property of the StatsBomb company) using only seven variables relating to shot type and position, and surrounding opponents (AUC = 0.781 and 0.801, respectively). Pre-trained models through transfer learning are suitable for identifying teams' strengths and weaknesses using small sample sizes and enable interpretation of the model's predictions.</p>\",\"PeriodicalId\":12716,\"journal\":{\"name\":\"Frontiers in Sports and Active Living\",\"volume\":\"7 \",\"pages\":\"1504362\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Sports and Active Living\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspor.2025.1504362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sports and Active Living","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspor.2025.1504362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在技术进步的推动下,运动队和博彩公司努力理解球员和球队活动以及比赛结果之间的关系。为此,事件成功的概率(例如,进球得分的概率,即xG代表预期目标)提供了关于球队和球员表现的深刻信息,并帮助统计和机器学习方法预测比赛结果。然而,最近的方法需要强大但复杂的模型,需要从业者更多的内在可解释性。本研究采用贝叶斯广义线性混合效应模型,引入一种简单、可解释的xG建模方法。与StatsBomb模型(StatsBomb公司的属性)相比,该模型提供了类似的性能,仅使用与射击类型和位置以及周围对手相关的七个变量(AUC分别= 0.781和0.801)。通过迁移学习的预训练模型适用于使用小样本量识别团队的优势和劣势,并能够解释模型的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward interpretable expected goals modeling using Bayesian mixed models.

Empowered by technological progress, sports teams and bookmakers strive to understand relationships between player and team activity and match outcomes. For this purpose, the probability of an event to succeed (e.g., the probability of a goal to be scored, namely, xG for eXpected Goals) provides insightful information on team and player performance and helps statistical and machine learning approaches predict match outcomes. However, recent approaches require powerful but complex models that need more inherent interpretability for practitioners. This study uses a Bayesian generalized linear mixed-effects model to introduce a simple and interpretable xG modeling approach. The model provided similar performance when compared to the StatsBomb model (property of the StatsBomb company) using only seven variables relating to shot type and position, and surrounding opponents (AUC = 0.781 and 0.801, respectively). Pre-trained models through transfer learning are suitable for identifying teams' strengths and weaknesses using small sample sizes and enable interpretation of the model's predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
7.40%
发文量
459
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信