凝血素II复合体调节红细胞生成过程中必需基因表达程序的表达。

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-05-15 Epub Date: 2025-05-19 DOI:10.1242/dev.204485
Deanna Abid, Kristin Murphy, Zachary Murphy, Nabil Rahman, Michael Getman, Laurie Steiner
{"title":"凝血素II复合体调节红细胞生成过程中必需基因表达程序的表达。","authors":"Deanna Abid, Kristin Murphy, Zachary Murphy, Nabil Rahman, Michael Getman, Laurie Steiner","doi":"10.1242/dev.204485","DOIUrl":null,"url":null,"abstract":"<p><p>Erythropoiesis is characterized by dramatic changes in gene expression in the context of a cell that is rapidly proliferating while simultaneously condensing its nucleus in anticipation of enucleation. The mechanisms that maintain high level expression of erythroid genes and promote nuclear condensation remain poorly understood. Condensin II is a ring-like complex that promotes mitotic chromatin condensation and has roles in regulating interphase chromatin architecture and gene expression. We interrogated the role of Condensin II in erythropoiesis using an erythroid-specific deletion of the Condensin II subunit, Ncaph2. Ncaph2 loss resulted in severe anemia by embryonic day 12.5 with embryonic lethality. Ncaph2 mutant erythroid cells had dysregulated maturation and disrupted cell cycle progression, but surprisingly NCAPH2 was dispensable for nuclear condensation. Genomic studies revealed that NCAPH2 occupied the promoter of key erythroid and cell cycle genes that were downregulated following Ncaph2 loss. Together, our results demonstrate an essential role for NCAPH2 in the gene expression programs that regulate cell cycle progression and erythroid differentiation, and identify a role for the Condensin II complex in the regulation of a lineage-specific differentiation program.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Condensin II complex regulates essential gene expression programs during erythropoiesis.\",\"authors\":\"Deanna Abid, Kristin Murphy, Zachary Murphy, Nabil Rahman, Michael Getman, Laurie Steiner\",\"doi\":\"10.1242/dev.204485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Erythropoiesis is characterized by dramatic changes in gene expression in the context of a cell that is rapidly proliferating while simultaneously condensing its nucleus in anticipation of enucleation. The mechanisms that maintain high level expression of erythroid genes and promote nuclear condensation remain poorly understood. Condensin II is a ring-like complex that promotes mitotic chromatin condensation and has roles in regulating interphase chromatin architecture and gene expression. We interrogated the role of Condensin II in erythropoiesis using an erythroid-specific deletion of the Condensin II subunit, Ncaph2. Ncaph2 loss resulted in severe anemia by embryonic day 12.5 with embryonic lethality. Ncaph2 mutant erythroid cells had dysregulated maturation and disrupted cell cycle progression, but surprisingly NCAPH2 was dispensable for nuclear condensation. Genomic studies revealed that NCAPH2 occupied the promoter of key erythroid and cell cycle genes that were downregulated following Ncaph2 loss. Together, our results demonstrate an essential role for NCAPH2 in the gene expression programs that regulate cell cycle progression and erythroid differentiation, and identify a role for the Condensin II complex in the regulation of a lineage-specific differentiation program.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204485\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204485","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

红细胞生成的特点是在细胞快速增殖的背景下基因表达的剧烈变化,同时在预期去核时浓缩其细胞核。维持红系基因高水平表达和促进核凝聚的机制尚不清楚。凝缩蛋白II是一种促进有丝分裂染色质凝聚的环状复合体,在调节间期染色质结构和基因表达中起作用。我们利用凝血素II亚基Ncaph2的红细胞特异性缺失来探究凝血素II在红细胞生成中的作用。Ncaph2缺失导致胚胎日(E) 12.5时严重贫血,具有胚胎致死性。Ncaph2突变体红细胞成熟失调,细胞周期进程中断,但令人惊讶的是,Ncaph2在核凝聚中是必不可少的。基因组研究表明,Ncaph2占据了关键红系和细胞周期基因的启动子,这些基因在Ncaph2缺失后下调。总之,我们的研究结果表明,Ncaph2在调节细胞周期进程和红细胞分化的基因表达程序中发挥了重要作用,并确定了凝血素II复合物在调节谱系特异性分化程序中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Condensin II complex regulates essential gene expression programs during erythropoiesis.

Erythropoiesis is characterized by dramatic changes in gene expression in the context of a cell that is rapidly proliferating while simultaneously condensing its nucleus in anticipation of enucleation. The mechanisms that maintain high level expression of erythroid genes and promote nuclear condensation remain poorly understood. Condensin II is a ring-like complex that promotes mitotic chromatin condensation and has roles in regulating interphase chromatin architecture and gene expression. We interrogated the role of Condensin II in erythropoiesis using an erythroid-specific deletion of the Condensin II subunit, Ncaph2. Ncaph2 loss resulted in severe anemia by embryonic day 12.5 with embryonic lethality. Ncaph2 mutant erythroid cells had dysregulated maturation and disrupted cell cycle progression, but surprisingly NCAPH2 was dispensable for nuclear condensation. Genomic studies revealed that NCAPH2 occupied the promoter of key erythroid and cell cycle genes that were downregulated following Ncaph2 loss. Together, our results demonstrate an essential role for NCAPH2 in the gene expression programs that regulate cell cycle progression and erythroid differentiation, and identify a role for the Condensin II complex in the regulation of a lineage-specific differentiation program.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信