{"title":"凝血素II复合体调节红细胞生成过程中必需基因表达程序的表达。","authors":"Deanna Abid, Kristin Murphy, Zachary Murphy, Nabil Rahman, Michael Getman, Laurie Steiner","doi":"10.1242/dev.204485","DOIUrl":null,"url":null,"abstract":"<p><p>Erythropoiesis is characterized by dramatic changes in gene expression in the context of a cell that is rapidly proliferating while simultaneously condensing its nucleus in anticipation of enucleation. The mechanisms that maintain high level expression of erythroid genes and promote nuclear condensation remain poorly understood. Condensin II is a ring-like complex that promotes mitotic chromatin condensation and has roles in regulating interphase chromatin architecture and gene expression. We interrogated the role of Condensin II in erythropoiesis using an erythroid-specific deletion of the Condensin II subunit, Ncaph2. Ncaph2 loss resulted in severe anemia by embryonic day 12.5 with embryonic lethality. Ncaph2 mutant erythroid cells had dysregulated maturation and disrupted cell cycle progression, but surprisingly NCAPH2 was dispensable for nuclear condensation. Genomic studies revealed that NCAPH2 occupied the promoter of key erythroid and cell cycle genes that were downregulated following Ncaph2 loss. Together, our results demonstrate an essential role for NCAPH2 in the gene expression programs that regulate cell cycle progression and erythroid differentiation, and identify a role for the Condensin II complex in the regulation of a lineage-specific differentiation program.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Condensin II complex regulates essential gene expression programs during erythropoiesis.\",\"authors\":\"Deanna Abid, Kristin Murphy, Zachary Murphy, Nabil Rahman, Michael Getman, Laurie Steiner\",\"doi\":\"10.1242/dev.204485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Erythropoiesis is characterized by dramatic changes in gene expression in the context of a cell that is rapidly proliferating while simultaneously condensing its nucleus in anticipation of enucleation. The mechanisms that maintain high level expression of erythroid genes and promote nuclear condensation remain poorly understood. Condensin II is a ring-like complex that promotes mitotic chromatin condensation and has roles in regulating interphase chromatin architecture and gene expression. We interrogated the role of Condensin II in erythropoiesis using an erythroid-specific deletion of the Condensin II subunit, Ncaph2. Ncaph2 loss resulted in severe anemia by embryonic day 12.5 with embryonic lethality. Ncaph2 mutant erythroid cells had dysregulated maturation and disrupted cell cycle progression, but surprisingly NCAPH2 was dispensable for nuclear condensation. Genomic studies revealed that NCAPH2 occupied the promoter of key erythroid and cell cycle genes that were downregulated following Ncaph2 loss. Together, our results demonstrate an essential role for NCAPH2 in the gene expression programs that regulate cell cycle progression and erythroid differentiation, and identify a role for the Condensin II complex in the regulation of a lineage-specific differentiation program.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204485\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204485","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The Condensin II complex regulates essential gene expression programs during erythropoiesis.
Erythropoiesis is characterized by dramatic changes in gene expression in the context of a cell that is rapidly proliferating while simultaneously condensing its nucleus in anticipation of enucleation. The mechanisms that maintain high level expression of erythroid genes and promote nuclear condensation remain poorly understood. Condensin II is a ring-like complex that promotes mitotic chromatin condensation and has roles in regulating interphase chromatin architecture and gene expression. We interrogated the role of Condensin II in erythropoiesis using an erythroid-specific deletion of the Condensin II subunit, Ncaph2. Ncaph2 loss resulted in severe anemia by embryonic day 12.5 with embryonic lethality. Ncaph2 mutant erythroid cells had dysregulated maturation and disrupted cell cycle progression, but surprisingly NCAPH2 was dispensable for nuclear condensation. Genomic studies revealed that NCAPH2 occupied the promoter of key erythroid and cell cycle genes that were downregulated following Ncaph2 loss. Together, our results demonstrate an essential role for NCAPH2 in the gene expression programs that regulate cell cycle progression and erythroid differentiation, and identify a role for the Condensin II complex in the regulation of a lineage-specific differentiation program.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.