Tuan Nguyen, Joshua Ong, Venkata Jonnakuti, Mouayad Masalkhi, Ethan Waisberg, Sarah Aman, Nasif Zaman, Prithul Sarker, Zhen Ling Teo, Daniel S W Ting, Darren S J Ting, Alireza Tavakkoli, Andrew G Lee
{"title":"人工智能在屈光不正诊断和治疗中的应用。","authors":"Tuan Nguyen, Joshua Ong, Venkata Jonnakuti, Mouayad Masalkhi, Ethan Waisberg, Sarah Aman, Nasif Zaman, Prithul Sarker, Zhen Ling Teo, Daniel S W Ting, Darren S J Ting, Alireza Tavakkoli, Andrew G Lee","doi":"10.1177/11206721251318384","DOIUrl":null,"url":null,"abstract":"<p><p>Refractive error is among the leading causes of visual impairment globally. The diagnosis and management of refractive error has traditionally relied on comprehensive eye examinations by eye care professionals, but access to these specialized services has remained limited in many areas of the world. Given this, artificial intelligence (AI) has shown immense potential in transforming the diagnosis and management of refractive error. We review AI applications across various aspects of refractive error care - from axial length prediction using fundus images to risk stratification for myopia progression. AI algorithms can be trained to analyze clinical data to detect refractive error as well as predict associated risks of myopia progression. For treatments such as implantable collamer and orthokeratology lenses, AI models facilitate vault size prediction and optimal lens fitting with high accuracy. Furthermore, AI has demonstrated promise in optimizing surgical planning and outcomes for refractive procedures. Emerging digital technologies such as telehealth, smartphone applications, and virtual reality integrated with AI present novel avenues for refractive error screening. We discuss key challenges, including limited validation datasets, lack of data standardization, image quality issues, population heterogeneity, practical deployment, and ethical considerations regarding patient privacy that need to be addressed before widespread clinical implementation.</p>","PeriodicalId":12000,"journal":{"name":"European Journal of Ophthalmology","volume":" ","pages":"1456-1480"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in the diagnosis and management of refractive errors.\",\"authors\":\"Tuan Nguyen, Joshua Ong, Venkata Jonnakuti, Mouayad Masalkhi, Ethan Waisberg, Sarah Aman, Nasif Zaman, Prithul Sarker, Zhen Ling Teo, Daniel S W Ting, Darren S J Ting, Alireza Tavakkoli, Andrew G Lee\",\"doi\":\"10.1177/11206721251318384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Refractive error is among the leading causes of visual impairment globally. The diagnosis and management of refractive error has traditionally relied on comprehensive eye examinations by eye care professionals, but access to these specialized services has remained limited in many areas of the world. Given this, artificial intelligence (AI) has shown immense potential in transforming the diagnosis and management of refractive error. We review AI applications across various aspects of refractive error care - from axial length prediction using fundus images to risk stratification for myopia progression. AI algorithms can be trained to analyze clinical data to detect refractive error as well as predict associated risks of myopia progression. For treatments such as implantable collamer and orthokeratology lenses, AI models facilitate vault size prediction and optimal lens fitting with high accuracy. Furthermore, AI has demonstrated promise in optimizing surgical planning and outcomes for refractive procedures. Emerging digital technologies such as telehealth, smartphone applications, and virtual reality integrated with AI present novel avenues for refractive error screening. We discuss key challenges, including limited validation datasets, lack of data standardization, image quality issues, population heterogeneity, practical deployment, and ethical considerations regarding patient privacy that need to be addressed before widespread clinical implementation.</p>\",\"PeriodicalId\":12000,\"journal\":{\"name\":\"European Journal of Ophthalmology\",\"volume\":\" \",\"pages\":\"1456-1480\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/11206721251318384\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/11206721251318384","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Artificial intelligence in the diagnosis and management of refractive errors.
Refractive error is among the leading causes of visual impairment globally. The diagnosis and management of refractive error has traditionally relied on comprehensive eye examinations by eye care professionals, but access to these specialized services has remained limited in many areas of the world. Given this, artificial intelligence (AI) has shown immense potential in transforming the diagnosis and management of refractive error. We review AI applications across various aspects of refractive error care - from axial length prediction using fundus images to risk stratification for myopia progression. AI algorithms can be trained to analyze clinical data to detect refractive error as well as predict associated risks of myopia progression. For treatments such as implantable collamer and orthokeratology lenses, AI models facilitate vault size prediction and optimal lens fitting with high accuracy. Furthermore, AI has demonstrated promise in optimizing surgical planning and outcomes for refractive procedures. Emerging digital technologies such as telehealth, smartphone applications, and virtual reality integrated with AI present novel avenues for refractive error screening. We discuss key challenges, including limited validation datasets, lack of data standardization, image quality issues, population heterogeneity, practical deployment, and ethical considerations regarding patient privacy that need to be addressed before widespread clinical implementation.
期刊介绍:
The European Journal of Ophthalmology was founded in 1991 and is issued in print bi-monthly. It publishes only peer-reviewed original research reporting clinical observations and laboratory investigations with clinical relevance focusing on new diagnostic and surgical techniques, instrument and therapy updates, results of clinical trials and research findings.