{"title":"纳米孔技术:当蛋白质分析蛋白质。","authors":"Verena Rukes","doi":"10.2533/chimia.2025.196","DOIUrl":null,"url":null,"abstract":"<p><p>Nanopore sensing is an emerging technology that can distinguish subtle differences in molecules and allows the observation of molecular processes. The technique has revolutionized DNA sequencing through long reads of single molecules. Following this success, nanopores are now increasingly applied to protein analysis. Proteins play central roles in cellular function and major diseases, however their analysis using established methods is complicated by the lack of protein-amplification methods. Here, two examples of nanopore-based protein analysis are described: the identification of biomarkers, and the analysis of protein function.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 4","pages":"196-199"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanopore Technology: When Proteins Analyse Proteins.\",\"authors\":\"Verena Rukes\",\"doi\":\"10.2533/chimia.2025.196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanopore sensing is an emerging technology that can distinguish subtle differences in molecules and allows the observation of molecular processes. The technique has revolutionized DNA sequencing through long reads of single molecules. Following this success, nanopores are now increasingly applied to protein analysis. Proteins play central roles in cellular function and major diseases, however their analysis using established methods is complicated by the lack of protein-amplification methods. Here, two examples of nanopore-based protein analysis are described: the identification of biomarkers, and the analysis of protein function.</p>\",\"PeriodicalId\":9957,\"journal\":{\"name\":\"Chimia\",\"volume\":\"79 4\",\"pages\":\"196-199\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2025.196\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.196","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanopore Technology: When Proteins Analyse Proteins.
Nanopore sensing is an emerging technology that can distinguish subtle differences in molecules and allows the observation of molecular processes. The technique has revolutionized DNA sequencing through long reads of single molecules. Following this success, nanopores are now increasingly applied to protein analysis. Proteins play central roles in cellular function and major diseases, however their analysis using established methods is complicated by the lack of protein-amplification methods. Here, two examples of nanopore-based protein analysis are described: the identification of biomarkers, and the analysis of protein function.
期刊介绍:
CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.