随机洛伦兹气体的半猝灭不变性原理:超越玻尔兹曼-格拉德极限。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-08 DOI:10.3390/e27040397
Bálint Tóth
{"title":"随机洛伦兹气体的半猝灭不变性原理:超越玻尔兹曼-格拉德极限。","authors":"Bálint Tóth","doi":"10.3390/e27040397","DOIUrl":null,"url":null,"abstract":"<p><p>By synchronously coupling multiple Lorentz trajectories exploring the same environment consisting of randomly placed scatterers in R3, we upgrade the annealed invariance principle proved in [Lutsko, Tóth (2020)] to the quenched setting (that is, valid for almost all realizations of the environment) along sufficiently fast extractor sequences.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semi-Quenched Invariance Principle for the Random Lorentz Gas: Beyond the Boltzmann-Grad Limit.\",\"authors\":\"Bálint Tóth\",\"doi\":\"10.3390/e27040397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By synchronously coupling multiple Lorentz trajectories exploring the same environment consisting of randomly placed scatterers in R3, we upgrade the annealed invariance principle proved in [Lutsko, Tóth (2020)] to the quenched setting (that is, valid for almost all realizations of the environment) along sufficiently fast extractor sequences.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040397\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040397","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过同步耦合多个洛伦兹轨迹,探索由R3中随机放置的散射体组成的相同环境,我们将[Lutsko, Tóth(2020)]中证明的退火不变性原理升级到淬灭设置(即,对几乎所有环境的实现都有效),并沿着足够快的提取器序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Quenched Invariance Principle for the Random Lorentz Gas: Beyond the Boltzmann-Grad Limit.

By synchronously coupling multiple Lorentz trajectories exploring the same environment consisting of randomly placed scatterers in R3, we upgrade the annealed invariance principle proved in [Lutsko, Tóth (2020)] to the quenched setting (that is, valid for almost all realizations of the environment) along sufficiently fast extractor sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信