{"title":"葡萄(Vitis vinifera L.)节间伸长规律及调控基因。","authors":"Youmei Li, Xinyu Huangfu, Wenqin Hua, Yiran Bian, Yuanqian Ni, Zhaosen Xie","doi":"10.1007/s11103-025-01590-w","DOIUrl":null,"url":null,"abstract":"<p><p>The robust growth of grape shoots often results in diminished grape quality and increased labor costs in grape production. Investigating the patterns of shoot elongation and the underlying mechanisms is beneficial for simplifying cultivation processes and enhancing fruit quality. However, there is limited research on this topic. In this study, we found that lateral growth and elongation growth occurred simultaneously in each grape internode, and exhibited a similar sigmoid growth curve model. The dissection of the internode structure revealed that elongation of the cells in the middle of the stem was the primary reason for the rapid elongation of grape shoots, while the sharp increase in the xylem area significantly contributed to the lateral growth of the internodes. Transcriptome analysis indicated that genes associated with cell cycle organization, cell wall organization, and phytohormone activity play important roles in regulating the growth of grape internodes. One candidate gene, VvSAUR72, which is related to auxin signaling components, was characterized to promote internode elongation by overexpression in Arabidopsis. These results provide a foundation for further investigation into the regulatory mechanisms related to the internode elongation in grapevine.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 3","pages":"62"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shoot elongation patterns and regulatory genes controlling grapevine (Vitis vinifera L.) internode elongation.\",\"authors\":\"Youmei Li, Xinyu Huangfu, Wenqin Hua, Yiran Bian, Yuanqian Ni, Zhaosen Xie\",\"doi\":\"10.1007/s11103-025-01590-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The robust growth of grape shoots often results in diminished grape quality and increased labor costs in grape production. Investigating the patterns of shoot elongation and the underlying mechanisms is beneficial for simplifying cultivation processes and enhancing fruit quality. However, there is limited research on this topic. In this study, we found that lateral growth and elongation growth occurred simultaneously in each grape internode, and exhibited a similar sigmoid growth curve model. The dissection of the internode structure revealed that elongation of the cells in the middle of the stem was the primary reason for the rapid elongation of grape shoots, while the sharp increase in the xylem area significantly contributed to the lateral growth of the internodes. Transcriptome analysis indicated that genes associated with cell cycle organization, cell wall organization, and phytohormone activity play important roles in regulating the growth of grape internodes. One candidate gene, VvSAUR72, which is related to auxin signaling components, was characterized to promote internode elongation by overexpression in Arabidopsis. These results provide a foundation for further investigation into the regulatory mechanisms related to the internode elongation in grapevine.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 3\",\"pages\":\"62\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01590-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01590-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Shoot elongation patterns and regulatory genes controlling grapevine (Vitis vinifera L.) internode elongation.
The robust growth of grape shoots often results in diminished grape quality and increased labor costs in grape production. Investigating the patterns of shoot elongation and the underlying mechanisms is beneficial for simplifying cultivation processes and enhancing fruit quality. However, there is limited research on this topic. In this study, we found that lateral growth and elongation growth occurred simultaneously in each grape internode, and exhibited a similar sigmoid growth curve model. The dissection of the internode structure revealed that elongation of the cells in the middle of the stem was the primary reason for the rapid elongation of grape shoots, while the sharp increase in the xylem area significantly contributed to the lateral growth of the internodes. Transcriptome analysis indicated that genes associated with cell cycle organization, cell wall organization, and phytohormone activity play important roles in regulating the growth of grape internodes. One candidate gene, VvSAUR72, which is related to auxin signaling components, was characterized to promote internode elongation by overexpression in Arabidopsis. These results provide a foundation for further investigation into the regulatory mechanisms related to the internode elongation in grapevine.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.