异养单细胞真核生物,在中等热的地热硫酸泉中以单细胞红藻蓝藻为食。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Yuki Sunada, Dai Tsujino, Shota Yamashita, Wei-Hsun Hsieh, Kei Tamashiro, Jin Izumi, Fumi Yagisawa, Baifeng Zhou, Shunsuke Hirooka, Takayuki Fujiwara, Shin-Ya Miyagishima
{"title":"异养单细胞真核生物,在中等热的地热硫酸泉中以单细胞红藻蓝藻为食。","authors":"Yuki Sunada, Dai Tsujino, Shota Yamashita, Wei-Hsun Hsieh, Kei Tamashiro, Jin Izumi, Fumi Yagisawa, Baifeng Zhou, Shunsuke Hirooka, Takayuki Fujiwara, Shin-Ya Miyagishima","doi":"10.1093/femsec/fiaf048","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfuric acidic hot springs (<pH 4.0, >37°C) are found in volcanic regions worldwide, where various bacteria, archaea, and the unicellular red algae Cyanidiophyceae dominate. Regarding heterotrophic eukaryotes, the only known species was the thermophilic amoeboflagellate Tetramitus thermacidophilus (class Eutetramitea, phylum Heterolobosea), which feeds on surrounding bacteria and archaea. In this study, we investigated three sulfuric hot springs (34.7°C-50°C, ∼pH 2.0) in Japan to determine whether other heterotrophic eukaryotes inhabit these environments. As a result, we isolated and identified cultures of four species capable of surviving at pH 2.0 and 40°C: Allovahlkampfia sp. (Eutetramitea, Heterolobosea); Nuclearia sp. and Parvularia sp. (Nucleariidea, Cristidiscoidea); and Vannella sp. (Discosea, Amoebozoa). Phylogenetic analyses suggest that these four species independently evolved from mesophilic and neutrophilic ancestors, separate from each other. Additionally, Platyophrya sp. (Colpodea, Ciliophora) and two species of Neobodo (Euglenozoa, Kinetoplastea) were also found in the same environment, while their maximum survival temperatures were 35°C and 30°C, respectively. Among these, all species except Neobodo were confirmed to grow exclusively by feeding on Cyanidiococcus sp., a dominant species of Cyanidiophyceae in the environment. Thus, various lineages of heterotrophic unicellular eukaryotes have independently developed acidophilic and thermotolerant traits, allowing them to colonize sulfuric hot springs.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":"101 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063673/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heterotrophic unicellular eukaryotes feeding on the unicellular red alga Cyanidiococcus sp. in moderately hot geothermal sulfuric springs.\",\"authors\":\"Yuki Sunada, Dai Tsujino, Shota Yamashita, Wei-Hsun Hsieh, Kei Tamashiro, Jin Izumi, Fumi Yagisawa, Baifeng Zhou, Shunsuke Hirooka, Takayuki Fujiwara, Shin-Ya Miyagishima\",\"doi\":\"10.1093/femsec/fiaf048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulfuric acidic hot springs (<pH 4.0, >37°C) are found in volcanic regions worldwide, where various bacteria, archaea, and the unicellular red algae Cyanidiophyceae dominate. Regarding heterotrophic eukaryotes, the only known species was the thermophilic amoeboflagellate Tetramitus thermacidophilus (class Eutetramitea, phylum Heterolobosea), which feeds on surrounding bacteria and archaea. In this study, we investigated three sulfuric hot springs (34.7°C-50°C, ∼pH 2.0) in Japan to determine whether other heterotrophic eukaryotes inhabit these environments. As a result, we isolated and identified cultures of four species capable of surviving at pH 2.0 and 40°C: Allovahlkampfia sp. (Eutetramitea, Heterolobosea); Nuclearia sp. and Parvularia sp. (Nucleariidea, Cristidiscoidea); and Vannella sp. (Discosea, Amoebozoa). Phylogenetic analyses suggest that these four species independently evolved from mesophilic and neutrophilic ancestors, separate from each other. Additionally, Platyophrya sp. (Colpodea, Ciliophora) and two species of Neobodo (Euglenozoa, Kinetoplastea) were also found in the same environment, while their maximum survival temperatures were 35°C and 30°C, respectively. Among these, all species except Neobodo were confirmed to grow exclusively by feeding on Cyanidiococcus sp., a dominant species of Cyanidiophyceae in the environment. Thus, various lineages of heterotrophic unicellular eukaryotes have independently developed acidophilic and thermotolerant traits, allowing them to colonize sulfuric hot springs.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\"101 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf048\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硫酸温泉(37°C)在世界各地的火山地区都有发现,在那里各种细菌、古细菌和单细胞红藻蓝藻占主导地位。关于异养真核生物,唯一已知的物种是嗜热变形虫热嗜虫Tetramitus(真虫纲,异藻门),以周围的细菌和古细菌为食。在这项研究中,我们调查了日本的三个硫磺温泉(34.7°C-50°C, ~ pH 2.0),以确定是否有其他异养真核生物栖息在这些环境中。结果,我们分离并鉴定了能够在pH 2.0和40°C下存活的四种培养物:Allovahlkampfia sp. (Eutetramitea, Heterolobosea);核虫属和小苗虫属(核虫总科、凤尾总科);和vanella sp. (Discosea, Amoebozoa)。系统发育分析表明,这四个物种独立地从中嗜和中性嗜的祖先进化而来,彼此分离。此外,在同一环境中还发现了Platyophrya sp. (Colpodea, Ciliophora)和Neobodo 2种(Euglenozoa, kinetoplasstea),它们的最高生存温度分别为35℃和30℃。其中,除Neobodo外,其余种属均完全以蓝藻科的优势种cyanidiophyceaceae sp.为食生长。因此,不同的异养单细胞真核生物谱系独立地发展了嗜酸和耐热特性,使它们能够在含硫的温泉中定居。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterotrophic unicellular eukaryotes feeding on the unicellular red alga Cyanidiococcus sp. in moderately hot geothermal sulfuric springs.

Sulfuric acidic hot springs (37°C) are found in volcanic regions worldwide, where various bacteria, archaea, and the unicellular red algae Cyanidiophyceae dominate. Regarding heterotrophic eukaryotes, the only known species was the thermophilic amoeboflagellate Tetramitus thermacidophilus (class Eutetramitea, phylum Heterolobosea), which feeds on surrounding bacteria and archaea. In this study, we investigated three sulfuric hot springs (34.7°C-50°C, ∼pH 2.0) in Japan to determine whether other heterotrophic eukaryotes inhabit these environments. As a result, we isolated and identified cultures of four species capable of surviving at pH 2.0 and 40°C: Allovahlkampfia sp. (Eutetramitea, Heterolobosea); Nuclearia sp. and Parvularia sp. (Nucleariidea, Cristidiscoidea); and Vannella sp. (Discosea, Amoebozoa). Phylogenetic analyses suggest that these four species independently evolved from mesophilic and neutrophilic ancestors, separate from each other. Additionally, Platyophrya sp. (Colpodea, Ciliophora) and two species of Neobodo (Euglenozoa, Kinetoplastea) were also found in the same environment, while their maximum survival temperatures were 35°C and 30°C, respectively. Among these, all species except Neobodo were confirmed to grow exclusively by feeding on Cyanidiococcus sp., a dominant species of Cyanidiophyceae in the environment. Thus, various lineages of heterotrophic unicellular eukaryotes have independently developed acidophilic and thermotolerant traits, allowing them to colonize sulfuric hot springs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信