Lin Fan, Ting Shi, Xuemei Chen, Yunjie Li, Pingping Han, Peter Ruhdal Jensen, Yi-Heng P Job Zhang
{"title":"健康天然糖d -塔格糖的生物合成:进展与机遇。","authors":"Lin Fan, Ting Shi, Xuemei Chen, Yunjie Li, Pingping Han, Peter Ruhdal Jensen, Yi-Heng P Job Zhang","doi":"10.1080/07388551.2025.2489424","DOIUrl":null,"url":null,"abstract":"<p><p>D-tagatose is a natural low-calorie rare sugar with nearly the same sweet taste as sucrose. It has nutritional and functional properties of great interest for health, such as anti-diabetes, anti-caries, anti-atherosclerosis, anti-hyperlipidemia, anti-aging, improvement of intestinal microflora, etc. The production of D-tagatose from D-galactose catalyzed by an alkali suffers from limited supplies of costly feedstock (i.e., lactose) and high manufacturing costs due to harsh reaction conditions, costly separation, as well as severe degradation and pollution. In this review, we briefly present the properties of D-tagatose and its physiological effects, review the recent advances in the biosynthesis of D-tagatose from inexpensive and abundant glucans (e.g., starch) and their derivatives (e.g., D-glucose and D-fructose) and from lactose, including both academic literature and industrial patents, as well as discuss its future challenges and opportunities. The biosynthesis of D-tagatose can be catalyzed by four types of biocatalysts: enzymes, whole-cells, microbial fermentation, and <i>in vitro</i> multi-enzyme molecular machines. The biomanufacturing of starchy D-tagatose catalyzed by multi-enzyme molecular machines could be the most promising approach because it not only makes D-tagatose from ample starch but also surpasses the equilibria of monosaccharide isomerization reactions (e.g., D-fructose-to-D-tagatose, D-galactose-to-D-tagatose). D-tagatose as a filler for a variety of food and drinks or a key component mixed with other sweeteners would become a predominant starch-derived sweetener and partially replace high-fructose corn sirup in the future.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of a healthy natural sugar D-tagatose: advances and opportunities.\",\"authors\":\"Lin Fan, Ting Shi, Xuemei Chen, Yunjie Li, Pingping Han, Peter Ruhdal Jensen, Yi-Heng P Job Zhang\",\"doi\":\"10.1080/07388551.2025.2489424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>D-tagatose is a natural low-calorie rare sugar with nearly the same sweet taste as sucrose. It has nutritional and functional properties of great interest for health, such as anti-diabetes, anti-caries, anti-atherosclerosis, anti-hyperlipidemia, anti-aging, improvement of intestinal microflora, etc. The production of D-tagatose from D-galactose catalyzed by an alkali suffers from limited supplies of costly feedstock (i.e., lactose) and high manufacturing costs due to harsh reaction conditions, costly separation, as well as severe degradation and pollution. In this review, we briefly present the properties of D-tagatose and its physiological effects, review the recent advances in the biosynthesis of D-tagatose from inexpensive and abundant glucans (e.g., starch) and their derivatives (e.g., D-glucose and D-fructose) and from lactose, including both academic literature and industrial patents, as well as discuss its future challenges and opportunities. The biosynthesis of D-tagatose can be catalyzed by four types of biocatalysts: enzymes, whole-cells, microbial fermentation, and <i>in vitro</i> multi-enzyme molecular machines. The biomanufacturing of starchy D-tagatose catalyzed by multi-enzyme molecular machines could be the most promising approach because it not only makes D-tagatose from ample starch but also surpasses the equilibria of monosaccharide isomerization reactions (e.g., D-fructose-to-D-tagatose, D-galactose-to-D-tagatose). D-tagatose as a filler for a variety of food and drinks or a key component mixed with other sweeteners would become a predominant starch-derived sweetener and partially replace high-fructose corn sirup in the future.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2025.2489424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2489424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biosynthesis of a healthy natural sugar D-tagatose: advances and opportunities.
D-tagatose is a natural low-calorie rare sugar with nearly the same sweet taste as sucrose. It has nutritional and functional properties of great interest for health, such as anti-diabetes, anti-caries, anti-atherosclerosis, anti-hyperlipidemia, anti-aging, improvement of intestinal microflora, etc. The production of D-tagatose from D-galactose catalyzed by an alkali suffers from limited supplies of costly feedstock (i.e., lactose) and high manufacturing costs due to harsh reaction conditions, costly separation, as well as severe degradation and pollution. In this review, we briefly present the properties of D-tagatose and its physiological effects, review the recent advances in the biosynthesis of D-tagatose from inexpensive and abundant glucans (e.g., starch) and their derivatives (e.g., D-glucose and D-fructose) and from lactose, including both academic literature and industrial patents, as well as discuss its future challenges and opportunities. The biosynthesis of D-tagatose can be catalyzed by four types of biocatalysts: enzymes, whole-cells, microbial fermentation, and in vitro multi-enzyme molecular machines. The biomanufacturing of starchy D-tagatose catalyzed by multi-enzyme molecular machines could be the most promising approach because it not only makes D-tagatose from ample starch but also surpasses the equilibria of monosaccharide isomerization reactions (e.g., D-fructose-to-D-tagatose, D-galactose-to-D-tagatose). D-tagatose as a filler for a variety of food and drinks or a key component mixed with other sweeteners would become a predominant starch-derived sweetener and partially replace high-fructose corn sirup in the future.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.