Beomyeol Baek, Yoon Ho Park, Ju-Mi Jeon, Hee-Young Shim, Eun-Kyoung Lee, Mi-Jeong Hong, Young-Woo Bae, Joong-Heok An, In-Cheol Shin, Hyun Suk Jung
{"title":"优化蜡样芽孢杆菌MALDI-TOF质谱鉴定:产孢量和培养时间的影响。","authors":"Beomyeol Baek, Yoon Ho Park, Ju-Mi Jeon, Hee-Young Shim, Eun-Kyoung Lee, Mi-Jeong Hong, Young-Woo Bae, Joong-Heok An, In-Cheol Shin, Hyun Suk Jung","doi":"10.3390/ijms26094355","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bacillus cereus</i> is a significant foodborne pathogen that presents a critical challenge in food safety due to its ability to form resistant spores and produce various toxins. The potential for severe food poisoning makes rapid and accurate identification of this pathogen essential. Conventional microbiological methods for <i>B. cereus</i> identification rely on morphological characteristics and biochemical tests, requiring extensive time and labor. However, even automated biochemical systems like VITEK2, while providing reliable results, still require up to 16 h for analysis and complex sample preparation procedures. MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry utilizes laser-induced ionization of bacterial proteins and subsequent time-of-flight analysis to generate unique mass spectral patterns. This established analytical technique for bacterial identification offers exceptional speed and simplicity through direct protein profiling. In this study, we optimized MALDI-TOF analysis conditions for <i>B. cereus</i> identification by examining various cultivation times. Our results demonstrated complete species-level identification accuracy with MALDI-TOF scores ≥ 2.0 with 12-h cultures, matching the reliability of VITEK2 while significantly reducing processing time. The identification rates decreased significantly from 100% at 12 h to 73.3% at 24 h and 50% at 48 h of incubation, correlating directly with increased spore formation. Detailed analysis at 4-h intervals revealed that high identification rates (93.3%) were maintained during 16 h of cultivation before declining significantly. This study establishes MALDI-TOF as a reliable and efficient tool for rapid <i>B. cereus</i> identification, representing a significant advancement in food safety diagnostics with potential time savings of more than 50% compared to conventional methods.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072534/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing MALDI-TOF Mass Spectrometry for the Identification of <i>Bacillus cereus</i>: The Impact of Sporulation and Cultivation Time.\",\"authors\":\"Beomyeol Baek, Yoon Ho Park, Ju-Mi Jeon, Hee-Young Shim, Eun-Kyoung Lee, Mi-Jeong Hong, Young-Woo Bae, Joong-Heok An, In-Cheol Shin, Hyun Suk Jung\",\"doi\":\"10.3390/ijms26094355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Bacillus cereus</i> is a significant foodborne pathogen that presents a critical challenge in food safety due to its ability to form resistant spores and produce various toxins. The potential for severe food poisoning makes rapid and accurate identification of this pathogen essential. Conventional microbiological methods for <i>B. cereus</i> identification rely on morphological characteristics and biochemical tests, requiring extensive time and labor. However, even automated biochemical systems like VITEK2, while providing reliable results, still require up to 16 h for analysis and complex sample preparation procedures. MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry utilizes laser-induced ionization of bacterial proteins and subsequent time-of-flight analysis to generate unique mass spectral patterns. This established analytical technique for bacterial identification offers exceptional speed and simplicity through direct protein profiling. In this study, we optimized MALDI-TOF analysis conditions for <i>B. cereus</i> identification by examining various cultivation times. Our results demonstrated complete species-level identification accuracy with MALDI-TOF scores ≥ 2.0 with 12-h cultures, matching the reliability of VITEK2 while significantly reducing processing time. The identification rates decreased significantly from 100% at 12 h to 73.3% at 24 h and 50% at 48 h of incubation, correlating directly with increased spore formation. Detailed analysis at 4-h intervals revealed that high identification rates (93.3%) were maintained during 16 h of cultivation before declining significantly. This study establishes MALDI-TOF as a reliable and efficient tool for rapid <i>B. cereus</i> identification, representing a significant advancement in food safety diagnostics with potential time savings of more than 50% compared to conventional methods.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072534/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26094355\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26094355","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing MALDI-TOF Mass Spectrometry for the Identification of Bacillus cereus: The Impact of Sporulation and Cultivation Time.
Bacillus cereus is a significant foodborne pathogen that presents a critical challenge in food safety due to its ability to form resistant spores and produce various toxins. The potential for severe food poisoning makes rapid and accurate identification of this pathogen essential. Conventional microbiological methods for B. cereus identification rely on morphological characteristics and biochemical tests, requiring extensive time and labor. However, even automated biochemical systems like VITEK2, while providing reliable results, still require up to 16 h for analysis and complex sample preparation procedures. MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry utilizes laser-induced ionization of bacterial proteins and subsequent time-of-flight analysis to generate unique mass spectral patterns. This established analytical technique for bacterial identification offers exceptional speed and simplicity through direct protein profiling. In this study, we optimized MALDI-TOF analysis conditions for B. cereus identification by examining various cultivation times. Our results demonstrated complete species-level identification accuracy with MALDI-TOF scores ≥ 2.0 with 12-h cultures, matching the reliability of VITEK2 while significantly reducing processing time. The identification rates decreased significantly from 100% at 12 h to 73.3% at 24 h and 50% at 48 h of incubation, correlating directly with increased spore formation. Detailed analysis at 4-h intervals revealed that high identification rates (93.3%) were maintained during 16 h of cultivation before declining significantly. This study establishes MALDI-TOF as a reliable and efficient tool for rapid B. cereus identification, representing a significant advancement in food safety diagnostics with potential time savings of more than 50% compared to conventional methods.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).