{"title":"在lps诱导的动物模型中利用干细胞疗法:机制、功效和未来方向。","authors":"Chengran Wang, Fanghong Ge, Fangjun Ge, Zhonghang Xu, Jinlan Jiang","doi":"10.1186/s13287-025-04290-w","DOIUrl":null,"url":null,"abstract":"<p><p>The severity and threat posed by inflammation are well documented, and lipopolysaccharides (LPS), as important inducers of inflammatory responses, are widely recognized for studying host immunity and the resulting tissue and organ damage. The LPS-induced disease model, triggers a remarkable release of inflammatory factors, immune and coagulation dysfunction, and damage to vital organs such as the brain, lungs, heart, liver, and kidneys. Recently, the role of mesenchymal stem cells (MSCs) in various clinical diseases has garnered significant attention due to their immunomodulatory, anti-inflammatory, tissue healing, anti-apoptotic, and antibacterial properties. Despite the common use of LPS models to induce disease models and simulate acute inflammation, the integration of stem cell therapy within these models remains underexplored. This article integrates the LPS induced animal model and reviews the current evidence regarding the therapeutic mechanisms of stem cells in LPS-induced disease models across various human body systems. Furthermore, this review predicts and hypothesizes the feasibility and potential of using stem cells in disease models that have not yet been extensively studied, based on existing animal inflammation models.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"176"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993993/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing stem cell therapeutics in LPS-induced animal models: mechanisms, efficacies, and future directions.\",\"authors\":\"Chengran Wang, Fanghong Ge, Fangjun Ge, Zhonghang Xu, Jinlan Jiang\",\"doi\":\"10.1186/s13287-025-04290-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The severity and threat posed by inflammation are well documented, and lipopolysaccharides (LPS), as important inducers of inflammatory responses, are widely recognized for studying host immunity and the resulting tissue and organ damage. The LPS-induced disease model, triggers a remarkable release of inflammatory factors, immune and coagulation dysfunction, and damage to vital organs such as the brain, lungs, heart, liver, and kidneys. Recently, the role of mesenchymal stem cells (MSCs) in various clinical diseases has garnered significant attention due to their immunomodulatory, anti-inflammatory, tissue healing, anti-apoptotic, and antibacterial properties. Despite the common use of LPS models to induce disease models and simulate acute inflammation, the integration of stem cell therapy within these models remains underexplored. This article integrates the LPS induced animal model and reviews the current evidence regarding the therapeutic mechanisms of stem cells in LPS-induced disease models across various human body systems. Furthermore, this review predicts and hypothesizes the feasibility and potential of using stem cells in disease models that have not yet been extensively studied, based on existing animal inflammation models.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"16 1\",\"pages\":\"176\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993993/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-025-04290-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04290-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Harnessing stem cell therapeutics in LPS-induced animal models: mechanisms, efficacies, and future directions.
The severity and threat posed by inflammation are well documented, and lipopolysaccharides (LPS), as important inducers of inflammatory responses, are widely recognized for studying host immunity and the resulting tissue and organ damage. The LPS-induced disease model, triggers a remarkable release of inflammatory factors, immune and coagulation dysfunction, and damage to vital organs such as the brain, lungs, heart, liver, and kidneys. Recently, the role of mesenchymal stem cells (MSCs) in various clinical diseases has garnered significant attention due to their immunomodulatory, anti-inflammatory, tissue healing, anti-apoptotic, and antibacterial properties. Despite the common use of LPS models to induce disease models and simulate acute inflammation, the integration of stem cell therapy within these models remains underexplored. This article integrates the LPS induced animal model and reviews the current evidence regarding the therapeutic mechanisms of stem cells in LPS-induced disease models across various human body systems. Furthermore, this review predicts and hypothesizes the feasibility and potential of using stem cells in disease models that have not yet been extensively studied, based on existing animal inflammation models.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.