Kyung Jin Choi, Woo Young Jeon, Mee Young Lee, Se Hoon Kim, Hyung Seo Park
{"title":"组胺诱导人支气管平滑肌细胞胞质钙动员。","authors":"Kyung Jin Choi, Woo Young Jeon, Mee Young Lee, Se Hoon Kim, Hyung Seo Park","doi":"10.1540/jsmr.61.29","DOIUrl":null,"url":null,"abstract":"<p><p>Histamine is a well-known mediator of bronchoconstriction. Despite the widespread use of histamine as a tool to study the bronchial smooth muscle function, the precise mechanism by which it causes calcium mobilization in bronchial smooth muscle cells remains unclear. Therefore, the current study aimed to investigate the mechanism of action of histamine in calcium mobilization in cultured human bronchial smooth muscle cells. A series of in vitro calcium imaging experiments have shown that histamine increases intracellular calcium levels in a concentration-dependent manner. The half maximum concentration of cytosolic Ca<sup>2+</sup> peak was 3.00 ± 0.25 µM of histamine. Histamine was able to mobilize calcium from intracellular stores, even in the absence of extracellular calcium. These histamine-induced calcium elevations were completely blocked by the H<sub>1</sub> receptor antagonist chlorpheniramine (1 µM). Histamine-induced calcium elevation was also completely inhibited by the phospholipase C (PLC) inhibitor U73122 (1 µM) and inositol 1,4,5-trisphosphate (InsP<sub>3</sub>) receptor inhibitor caffeine (20 mM). Cyanide p-(trifluoromethoxy)phenylhydrazone (1 µM) and oligomycin (1 µg/ml) effectively attenuated histamine-induced calcium release from intracellular stores. In the presence of histamine, cytosolic calcium elevation induced by reperfusion of 1.28 mM extracellular calcium after the depletion of stores was significantly inhibited by FCCP and oligomycin, unlike in the presence of thapsigargin. Based on the above results, we can conclude that histamine activates the intracellular PLC/InP<sub>3</sub> pathway through the H<sub>1</sub> receptor, which in turn activates the InP<sub>3</sub> receptor present in intracellular stores to mobilize calcium in human bronchial smooth muscle cells. In addition, the mitochondria appear to be involved in the release of calcium from intracellular stores. These results provide insights into the mechanisms underlying histamine-induced calcium mobilization for bronchoconstriction under pathophysiological conditions.</p>","PeriodicalId":39619,"journal":{"name":"Journal of Smooth Muscle Research","volume":"61 ","pages":"29-42"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996695/pdf/","citationCount":"0","resultStr":"{\"title\":\"Histamine-induced cytosolic calcium mobilization in human bronchial smooth muscle cells.\",\"authors\":\"Kyung Jin Choi, Woo Young Jeon, Mee Young Lee, Se Hoon Kim, Hyung Seo Park\",\"doi\":\"10.1540/jsmr.61.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histamine is a well-known mediator of bronchoconstriction. Despite the widespread use of histamine as a tool to study the bronchial smooth muscle function, the precise mechanism by which it causes calcium mobilization in bronchial smooth muscle cells remains unclear. Therefore, the current study aimed to investigate the mechanism of action of histamine in calcium mobilization in cultured human bronchial smooth muscle cells. A series of in vitro calcium imaging experiments have shown that histamine increases intracellular calcium levels in a concentration-dependent manner. The half maximum concentration of cytosolic Ca<sup>2+</sup> peak was 3.00 ± 0.25 µM of histamine. Histamine was able to mobilize calcium from intracellular stores, even in the absence of extracellular calcium. These histamine-induced calcium elevations were completely blocked by the H<sub>1</sub> receptor antagonist chlorpheniramine (1 µM). Histamine-induced calcium elevation was also completely inhibited by the phospholipase C (PLC) inhibitor U73122 (1 µM) and inositol 1,4,5-trisphosphate (InsP<sub>3</sub>) receptor inhibitor caffeine (20 mM). Cyanide p-(trifluoromethoxy)phenylhydrazone (1 µM) and oligomycin (1 µg/ml) effectively attenuated histamine-induced calcium release from intracellular stores. In the presence of histamine, cytosolic calcium elevation induced by reperfusion of 1.28 mM extracellular calcium after the depletion of stores was significantly inhibited by FCCP and oligomycin, unlike in the presence of thapsigargin. Based on the above results, we can conclude that histamine activates the intracellular PLC/InP<sub>3</sub> pathway through the H<sub>1</sub> receptor, which in turn activates the InP<sub>3</sub> receptor present in intracellular stores to mobilize calcium in human bronchial smooth muscle cells. In addition, the mitochondria appear to be involved in the release of calcium from intracellular stores. These results provide insights into the mechanisms underlying histamine-induced calcium mobilization for bronchoconstriction under pathophysiological conditions.</p>\",\"PeriodicalId\":39619,\"journal\":{\"name\":\"Journal of Smooth Muscle Research\",\"volume\":\"61 \",\"pages\":\"29-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Smooth Muscle Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1540/jsmr.61.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Smooth Muscle Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1540/jsmr.61.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Histamine-induced cytosolic calcium mobilization in human bronchial smooth muscle cells.
Histamine is a well-known mediator of bronchoconstriction. Despite the widespread use of histamine as a tool to study the bronchial smooth muscle function, the precise mechanism by which it causes calcium mobilization in bronchial smooth muscle cells remains unclear. Therefore, the current study aimed to investigate the mechanism of action of histamine in calcium mobilization in cultured human bronchial smooth muscle cells. A series of in vitro calcium imaging experiments have shown that histamine increases intracellular calcium levels in a concentration-dependent manner. The half maximum concentration of cytosolic Ca2+ peak was 3.00 ± 0.25 µM of histamine. Histamine was able to mobilize calcium from intracellular stores, even in the absence of extracellular calcium. These histamine-induced calcium elevations were completely blocked by the H1 receptor antagonist chlorpheniramine (1 µM). Histamine-induced calcium elevation was also completely inhibited by the phospholipase C (PLC) inhibitor U73122 (1 µM) and inositol 1,4,5-trisphosphate (InsP3) receptor inhibitor caffeine (20 mM). Cyanide p-(trifluoromethoxy)phenylhydrazone (1 µM) and oligomycin (1 µg/ml) effectively attenuated histamine-induced calcium release from intracellular stores. In the presence of histamine, cytosolic calcium elevation induced by reperfusion of 1.28 mM extracellular calcium after the depletion of stores was significantly inhibited by FCCP and oligomycin, unlike in the presence of thapsigargin. Based on the above results, we can conclude that histamine activates the intracellular PLC/InP3 pathway through the H1 receptor, which in turn activates the InP3 receptor present in intracellular stores to mobilize calcium in human bronchial smooth muscle cells. In addition, the mitochondria appear to be involved in the release of calcium from intracellular stores. These results provide insights into the mechanisms underlying histamine-induced calcium mobilization for bronchoconstriction under pathophysiological conditions.