{"title":"设计基于1,4-二氢吡啶的多靶点疗法:最新进展和未来方向。","authors":"Aditi Soni, Monika Sharma, Rajesh K Singh","doi":"10.2174/0115680266375345250414050338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>1,4-Dihydropyridines (1,4-DHPs) serve as versatile scaffolds in medicinal chemistry, exhibiting multitarget potential with anticancer, cardiovascular, antioxidant, antiinflammatory, antimicrobial, and analgesic effects. Structural modifications enhance their binding affinity, bioavailability, and selectivity.</p><p><strong>Aim: </strong>This review aims to explore the broad therapeutic potential of 1,4-DHPs by analyzing their biological activities and structure-activity relationships (SAR). Additionally, it seeks to provide medicinal chemists with insights into key structural modifications that can optimize their pharmacological efficacy.</p><p><strong>Method: </strong>A comprehensive literature search was conducted in PubMed, ScienceDirect, Elsevier, and Google Scholar, prioritizing peer-reviewed studies from the last decade. Inclusion criteria focused on pharmacological properties, SAR, and therapeutic potential of 1,4-DHPs, while nonpeer- reviewed or irrelevant studies were excluded. Data extraction analyzed SAR trends, emphasizing the impact of structural modifications on binding affinity, bioavailability, and biological activity.</p><p><strong>Results: </strong>The review highlights that specific modifications in aromatic substituents, ester groups, and heterocyclic rings play a crucial role in enhancing the biological activity and selectivity of 1,4- DHPs. Their ability to modulate key enzymes and receptors contributes to their effectiveness as multitarget agents. Comparative SAR analysis provides evidence of the potential of 1,4-DHPs as next-generation therapeutics.</p><p><strong>Conclusion: </strong>1,4-DHPs offer a promising framework for drug development, with the potential to address complex, multifactorial diseases. By understanding and optimizing SAR, medicinal chemists can design more selective and potent 1,4-DHP-based drugs. Future research should focus on refining these structural modifications to unlock their full therapeutic potential.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing 1,4-Dihydropyridines-Based Multitarget Therapeutics: Recent Advances and Future Directions.\",\"authors\":\"Aditi Soni, Monika Sharma, Rajesh K Singh\",\"doi\":\"10.2174/0115680266375345250414050338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>1,4-Dihydropyridines (1,4-DHPs) serve as versatile scaffolds in medicinal chemistry, exhibiting multitarget potential with anticancer, cardiovascular, antioxidant, antiinflammatory, antimicrobial, and analgesic effects. Structural modifications enhance their binding affinity, bioavailability, and selectivity.</p><p><strong>Aim: </strong>This review aims to explore the broad therapeutic potential of 1,4-DHPs by analyzing their biological activities and structure-activity relationships (SAR). Additionally, it seeks to provide medicinal chemists with insights into key structural modifications that can optimize their pharmacological efficacy.</p><p><strong>Method: </strong>A comprehensive literature search was conducted in PubMed, ScienceDirect, Elsevier, and Google Scholar, prioritizing peer-reviewed studies from the last decade. Inclusion criteria focused on pharmacological properties, SAR, and therapeutic potential of 1,4-DHPs, while nonpeer- reviewed or irrelevant studies were excluded. Data extraction analyzed SAR trends, emphasizing the impact of structural modifications on binding affinity, bioavailability, and biological activity.</p><p><strong>Results: </strong>The review highlights that specific modifications in aromatic substituents, ester groups, and heterocyclic rings play a crucial role in enhancing the biological activity and selectivity of 1,4- DHPs. Their ability to modulate key enzymes and receptors contributes to their effectiveness as multitarget agents. Comparative SAR analysis provides evidence of the potential of 1,4-DHPs as next-generation therapeutics.</p><p><strong>Conclusion: </strong>1,4-DHPs offer a promising framework for drug development, with the potential to address complex, multifactorial diseases. By understanding and optimizing SAR, medicinal chemists can design more selective and potent 1,4-DHP-based drugs. Future research should focus on refining these structural modifications to unlock their full therapeutic potential.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266375345250414050338\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266375345250414050338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Designing 1,4-Dihydropyridines-Based Multitarget Therapeutics: Recent Advances and Future Directions.
Background: 1,4-Dihydropyridines (1,4-DHPs) serve as versatile scaffolds in medicinal chemistry, exhibiting multitarget potential with anticancer, cardiovascular, antioxidant, antiinflammatory, antimicrobial, and analgesic effects. Structural modifications enhance their binding affinity, bioavailability, and selectivity.
Aim: This review aims to explore the broad therapeutic potential of 1,4-DHPs by analyzing their biological activities and structure-activity relationships (SAR). Additionally, it seeks to provide medicinal chemists with insights into key structural modifications that can optimize their pharmacological efficacy.
Method: A comprehensive literature search was conducted in PubMed, ScienceDirect, Elsevier, and Google Scholar, prioritizing peer-reviewed studies from the last decade. Inclusion criteria focused on pharmacological properties, SAR, and therapeutic potential of 1,4-DHPs, while nonpeer- reviewed or irrelevant studies were excluded. Data extraction analyzed SAR trends, emphasizing the impact of structural modifications on binding affinity, bioavailability, and biological activity.
Results: The review highlights that specific modifications in aromatic substituents, ester groups, and heterocyclic rings play a crucial role in enhancing the biological activity and selectivity of 1,4- DHPs. Their ability to modulate key enzymes and receptors contributes to their effectiveness as multitarget agents. Comparative SAR analysis provides evidence of the potential of 1,4-DHPs as next-generation therapeutics.
Conclusion: 1,4-DHPs offer a promising framework for drug development, with the potential to address complex, multifactorial diseases. By understanding and optimizing SAR, medicinal chemists can design more selective and potent 1,4-DHP-based drugs. Future research should focus on refining these structural modifications to unlock their full therapeutic potential.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.