基于相对熵正则化和度量传播的无监督域自适应方法。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-14 DOI:10.3390/e27040426
Lianghao Tan, Zhuo Peng, Yongjia Song, Xiaoyi Liu, Huangqi Jiang, Shubing Liu, Weixi Wu, Zhiyuan Xiang
{"title":"基于相对熵正则化和度量传播的无监督域自适应方法。","authors":"Lianghao Tan, Zhuo Peng, Yongjia Song, Xiaoyi Liu, Huangqi Jiang, Shubing Liu, Weixi Wu, Zhiyuan Xiang","doi":"10.3390/e27040426","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel unsupervised domain adaptation (UDA) framework that integrates information-theoretic principles to mitigate distributional discrepancies between source and target domains. The proposed method incorporates two key components: (1) relative entropy regularization, which leverages Kullback-Leibler (KL) divergence to align the predicted label distribution of the target domain with a reference distribution derived from the source domain, thereby reducing prediction uncertainty; and (2) measure propagation, a technique that transfers probability mass from the source domain to generate pseudo-measures-estimated probabilistic representations-for the unlabeled target domain. This dual mechanism enhances both global feature alignment and semantic consistency across domains. Extensive experiments on benchmark datasets (OfficeHome and DomainNet) demonstrate that the proposed approach consistently outperforms State-of-the-Art methods, particularly in scenarios with significant domain shifts. These results confirm the robustness, scalability, and theoretical grounding of our framework, offering a new perspective on the fusion of information theory and domain adaptation.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Domain Adaptation Method Based on Relative Entropy Regularization and Measure Propagation.\",\"authors\":\"Lianghao Tan, Zhuo Peng, Yongjia Song, Xiaoyi Liu, Huangqi Jiang, Shubing Liu, Weixi Wu, Zhiyuan Xiang\",\"doi\":\"10.3390/e27040426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a novel unsupervised domain adaptation (UDA) framework that integrates information-theoretic principles to mitigate distributional discrepancies between source and target domains. The proposed method incorporates two key components: (1) relative entropy regularization, which leverages Kullback-Leibler (KL) divergence to align the predicted label distribution of the target domain with a reference distribution derived from the source domain, thereby reducing prediction uncertainty; and (2) measure propagation, a technique that transfers probability mass from the source domain to generate pseudo-measures-estimated probabilistic representations-for the unlabeled target domain. This dual mechanism enhances both global feature alignment and semantic consistency across domains. Extensive experiments on benchmark datasets (OfficeHome and DomainNet) demonstrate that the proposed approach consistently outperforms State-of-the-Art methods, particularly in scenarios with significant domain shifts. These results confirm the robustness, scalability, and theoretical grounding of our framework, offering a new perspective on the fusion of information theory and domain adaptation.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040426\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040426","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的无监督域自适应(UDA)框架,该框架集成了信息论原理来缓解源域和目标域之间的分布差异。该方法包含两个关键部分:(1)相对熵正则化,利用Kullback-Leibler (KL)散度将目标域的预测标签分布与源域的参考分布对齐,从而降低预测的不确定性;(2)度量传播,一种将概率质量从源域转移到未标记目标域的伪度量(估计的概率表示)的技术。这种双重机制增强了全局特征对齐和跨域语义一致性。在基准数据集(OfficeHome和DomainNet)上进行的大量实验表明,所提出的方法始终优于最先进的方法,特别是在具有显著域转移的场景中。这些结果证实了我们的框架的鲁棒性、可扩展性和理论基础,为信息理论和领域适应的融合提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Domain Adaptation Method Based on Relative Entropy Regularization and Measure Propagation.

This paper presents a novel unsupervised domain adaptation (UDA) framework that integrates information-theoretic principles to mitigate distributional discrepancies between source and target domains. The proposed method incorporates two key components: (1) relative entropy regularization, which leverages Kullback-Leibler (KL) divergence to align the predicted label distribution of the target domain with a reference distribution derived from the source domain, thereby reducing prediction uncertainty; and (2) measure propagation, a technique that transfers probability mass from the source domain to generate pseudo-measures-estimated probabilistic representations-for the unlabeled target domain. This dual mechanism enhances both global feature alignment and semantic consistency across domains. Extensive experiments on benchmark datasets (OfficeHome and DomainNet) demonstrate that the proposed approach consistently outperforms State-of-the-Art methods, particularly in scenarios with significant domain shifts. These results confirm the robustness, scalability, and theoretical grounding of our framework, offering a new perspective on the fusion of information theory and domain adaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信