低复杂度高效回归模型的分解高斯过程。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-07 DOI:10.3390/e27040393
Anis Fradi, Tien-Tam Tran, Chafik Samir
{"title":"低复杂度高效回归模型的分解高斯过程。","authors":"Anis Fradi, Tien-Tam Tran, Chafik Samir","doi":"10.3390/e27040393","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we address the challenges of inferring and learning from a substantial number of observations (N≫1) with a Gaussian process regression model. First, we propose a flexible construction of well-adapted covariances originally derived from specific differential operators. Second, we prove its convergence and show its low computational cost scaling as O(Nm2) for inference and O(m3) for learning instead of O(N3) for a canonical Gaussian process where N≫m. Moreover, we develop an implementation that requires less memory O(m2) instead of O(N2). Finally, we demonstrate the effectiveness of the proposed method with simulation studies and experiments on real data. In addition, we conduct a comparative study with the aim of situating it in relation to certain cutting-edge methods.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decomposed Gaussian Processes for Efficient Regression Models with Low Complexity.\",\"authors\":\"Anis Fradi, Tien-Tam Tran, Chafik Samir\",\"doi\":\"10.3390/e27040393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we address the challenges of inferring and learning from a substantial number of observations (N≫1) with a Gaussian process regression model. First, we propose a flexible construction of well-adapted covariances originally derived from specific differential operators. Second, we prove its convergence and show its low computational cost scaling as O(Nm2) for inference and O(m3) for learning instead of O(N3) for a canonical Gaussian process where N≫m. Moreover, we develop an implementation that requires less memory O(m2) instead of O(N2). Finally, we demonstrate the effectiveness of the proposed method with simulation studies and experiments on real data. In addition, we conduct a comparative study with the aim of situating it in relation to certain cutting-edge methods.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040393\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040393","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们解决了用高斯过程回归模型从大量观测值(N > 1)中进行推断和学习的挑战。首先,我们提出了一种灵活的自适应协方差的构造,这种协方差最初是由特定的微分算子推导出来的。其次,我们证明了它的收敛性,并证明了它的低计算成本缩放为O(Nm2)的推理和O(m3)的学习,而不是O(N3)的典型高斯过程,其中N > m。此外,我们开发了一种需要更少内存的实现O(m2)而不是O(N2)。最后,通过仿真研究和实际数据实验验证了所提方法的有效性。此外,我们还进行了比较研究,目的是将其与某些前沿方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposed Gaussian Processes for Efficient Regression Models with Low Complexity.

In this paper, we address the challenges of inferring and learning from a substantial number of observations (N≫1) with a Gaussian process regression model. First, we propose a flexible construction of well-adapted covariances originally derived from specific differential operators. Second, we prove its convergence and show its low computational cost scaling as O(Nm2) for inference and O(m3) for learning instead of O(N3) for a canonical Gaussian process where N≫m. Moreover, we develop an implementation that requires less memory O(m2) instead of O(N2). Finally, we demonstrate the effectiveness of the proposed method with simulation studies and experiments on real data. In addition, we conduct a comparative study with the aim of situating it in relation to certain cutting-edge methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信