{"title":"探索进化耦合假说:酶的性能提高与耗散增加有关吗?","authors":"Davor Juretić","doi":"10.3390/e27040365","DOIUrl":null,"url":null,"abstract":"<p><p>The research literature presents divergent opinions regarding the role of dissipation in living systems, with views ranging from it being useless to it being essential for driving life. The implications of universal thermodynamic evolution are often overlooked or considered controversial. A higher rate of entropy production indicates faster thermodynamic evolution. We calculated enzyme-associated dissipation under steady-state conditions using minimalistic models of enzyme kinetics when all microscopic rate constants are known. We found that dissipation is roughly proportional to the turnover number, and a log-log power-law relationship exists between dissipation and the catalytic efficiency of enzymes. \"Perfect\" specialized enzymes exhibit the highest dissipation levels and represent the pinnacle of biological evolution. The examples that we analyzed suggested two key points: (a) more evolved enzymes excel in free-energy dissipation, and (b) the proposed evolutionary trajectory from generalist to specialized enzymes should involve increased dissipation for the latter. Introducing stochastic noise in the kinetics of individual enzymes may lead to optimal performance parameters that exceed the observed values. Our findings indicate that biological evolution has opened new channels for dissipation through specialized enzymes. We also discuss the implications of our results concerning scaling laws and the seamless coupling between thermodynamic and biological evolution in living systems immersed in out-of-equilibrium environments.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025749/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Evolution-Coupling Hypothesis: Do Enzymes' Performance Gains Correlate with Increased Dissipation?\",\"authors\":\"Davor Juretić\",\"doi\":\"10.3390/e27040365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The research literature presents divergent opinions regarding the role of dissipation in living systems, with views ranging from it being useless to it being essential for driving life. The implications of universal thermodynamic evolution are often overlooked or considered controversial. A higher rate of entropy production indicates faster thermodynamic evolution. We calculated enzyme-associated dissipation under steady-state conditions using minimalistic models of enzyme kinetics when all microscopic rate constants are known. We found that dissipation is roughly proportional to the turnover number, and a log-log power-law relationship exists between dissipation and the catalytic efficiency of enzymes. \\\"Perfect\\\" specialized enzymes exhibit the highest dissipation levels and represent the pinnacle of biological evolution. The examples that we analyzed suggested two key points: (a) more evolved enzymes excel in free-energy dissipation, and (b) the proposed evolutionary trajectory from generalist to specialized enzymes should involve increased dissipation for the latter. Introducing stochastic noise in the kinetics of individual enzymes may lead to optimal performance parameters that exceed the observed values. Our findings indicate that biological evolution has opened new channels for dissipation through specialized enzymes. We also discuss the implications of our results concerning scaling laws and the seamless coupling between thermodynamic and biological evolution in living systems immersed in out-of-equilibrium environments.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040365\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040365","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the Evolution-Coupling Hypothesis: Do Enzymes' Performance Gains Correlate with Increased Dissipation?
The research literature presents divergent opinions regarding the role of dissipation in living systems, with views ranging from it being useless to it being essential for driving life. The implications of universal thermodynamic evolution are often overlooked or considered controversial. A higher rate of entropy production indicates faster thermodynamic evolution. We calculated enzyme-associated dissipation under steady-state conditions using minimalistic models of enzyme kinetics when all microscopic rate constants are known. We found that dissipation is roughly proportional to the turnover number, and a log-log power-law relationship exists between dissipation and the catalytic efficiency of enzymes. "Perfect" specialized enzymes exhibit the highest dissipation levels and represent the pinnacle of biological evolution. The examples that we analyzed suggested two key points: (a) more evolved enzymes excel in free-energy dissipation, and (b) the proposed evolutionary trajectory from generalist to specialized enzymes should involve increased dissipation for the latter. Introducing stochastic noise in the kinetics of individual enzymes may lead to optimal performance parameters that exceed the observed values. Our findings indicate that biological evolution has opened new channels for dissipation through specialized enzymes. We also discuss the implications of our results concerning scaling laws and the seamless coupling between thermodynamic and biological evolution in living systems immersed in out-of-equilibrium environments.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.