Domenico Pomarico, Mahul Pandey, Riccardo Cioli, Federico Dell'Anna, Saverio Pascazio, Francesco V Pepe, Paolo Facchi, Elisa Ercolessi
{"title":"Schwinger模型实时动力学中粒子密度相关优化电路中的量子误差缓解。","authors":"Domenico Pomarico, Mahul Pandey, Riccardo Cioli, Federico Dell'Anna, Saverio Pascazio, Francesco V Pepe, Paolo Facchi, Elisa Ercolessi","doi":"10.3390/e27040427","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum computing gives direct access to the study of the real-time dynamics of quantum many-body systems. In principle, it is possible to directly calculate non-equal-time correlation functions, from which one can detect interesting phenomena, such as the presence of quantum scars or dynamical quantum phase transitions. In practice, these calculations are strongly affected by noise, due to the complexity of the required quantum circuits. As a testbed for the evaluation of the real-time evolution of observables and correlations, the dynamics of the Zn Schwinger model in a one-dimensional lattice is considered. To control the computational cost, we adopt a quantum-classical strategy that reduces the dimensionality of the system by restricting the dynamics to the Dirac vacuum sector and optimizes the embedding into a qubit model by minimizing the number of three-qubit gates. The time evolution of particle-density operators in a non-equilibrium quench protocol is both simulated in a bare noisy condition and implemented on a physical IBM quantum device. In either case, the convergence towards a maximally mixed state is targeted by means of different error mitigation techniques. The evaluation of the particle-density correlation shows a well-performing post-processing error mitigation for properly chosen coupling regimes.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026438/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum Error Mitigation in Optimized Circuits for Particle-Density Correlations in Real-Time Dynamics of the Schwinger Model.\",\"authors\":\"Domenico Pomarico, Mahul Pandey, Riccardo Cioli, Federico Dell'Anna, Saverio Pascazio, Francesco V Pepe, Paolo Facchi, Elisa Ercolessi\",\"doi\":\"10.3390/e27040427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum computing gives direct access to the study of the real-time dynamics of quantum many-body systems. In principle, it is possible to directly calculate non-equal-time correlation functions, from which one can detect interesting phenomena, such as the presence of quantum scars or dynamical quantum phase transitions. In practice, these calculations are strongly affected by noise, due to the complexity of the required quantum circuits. As a testbed for the evaluation of the real-time evolution of observables and correlations, the dynamics of the Zn Schwinger model in a one-dimensional lattice is considered. To control the computational cost, we adopt a quantum-classical strategy that reduces the dimensionality of the system by restricting the dynamics to the Dirac vacuum sector and optimizes the embedding into a qubit model by minimizing the number of three-qubit gates. The time evolution of particle-density operators in a non-equilibrium quench protocol is both simulated in a bare noisy condition and implemented on a physical IBM quantum device. In either case, the convergence towards a maximally mixed state is targeted by means of different error mitigation techniques. The evaluation of the particle-density correlation shows a well-performing post-processing error mitigation for properly chosen coupling regimes.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040427\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040427","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantum Error Mitigation in Optimized Circuits for Particle-Density Correlations in Real-Time Dynamics of the Schwinger Model.
Quantum computing gives direct access to the study of the real-time dynamics of quantum many-body systems. In principle, it is possible to directly calculate non-equal-time correlation functions, from which one can detect interesting phenomena, such as the presence of quantum scars or dynamical quantum phase transitions. In practice, these calculations are strongly affected by noise, due to the complexity of the required quantum circuits. As a testbed for the evaluation of the real-time evolution of observables and correlations, the dynamics of the Zn Schwinger model in a one-dimensional lattice is considered. To control the computational cost, we adopt a quantum-classical strategy that reduces the dimensionality of the system by restricting the dynamics to the Dirac vacuum sector and optimizes the embedding into a qubit model by minimizing the number of three-qubit gates. The time evolution of particle-density operators in a non-equilibrium quench protocol is both simulated in a bare noisy condition and implemented on a physical IBM quantum device. In either case, the convergence towards a maximally mixed state is targeted by means of different error mitigation techniques. The evaluation of the particle-density correlation shows a well-performing post-processing error mitigation for properly chosen coupling regimes.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.