累积熵谱中极端事件的特征。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-10 DOI:10.3390/e27040410
Ewa A Drzazga-Szczȩśniak, Adam Z Kaczmarek, Marta Kielak, Shivam Gupta, Jakub T Gnyp, Katarzyna Pluta, Zygmunt Ba K, Piotr Szczepanik, Dominik Szczȩśniak
{"title":"累积熵谱中极端事件的特征。","authors":"Ewa A Drzazga-Szczȩśniak, Adam Z Kaczmarek, Marta Kielak, Shivam Gupta, Jakub T Gnyp, Katarzyna Pluta, Zygmunt Ba K, Piotr Szczepanik, Dominik Szczȩśniak","doi":"10.3390/e27040410","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the cumulative effect of the empirical probability distribution of a random variable is identified as a factor that amplifies the occurrence of extreme events in datasets. To quantify this observation, a corresponding information measure is introduced, drawing upon Shannon entropy for joint probabilities. The proposed approach is validated using selected market data as case studies, encompassing various instances of extreme events. In particular, the results indicate that the introduced cumulative measure exhibits distinctive signatures of such events, even when the data are relatively noisy. These findings highlight the potential of the discussed concept for developing a new class of related indicators or classifiers.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026119/pdf/","citationCount":"0","resultStr":"{\"title\":\"Signatures of Extreme Events in Cumulative Entropic Spectrum.\",\"authors\":\"Ewa A Drzazga-Szczȩśniak, Adam Z Kaczmarek, Marta Kielak, Shivam Gupta, Jakub T Gnyp, Katarzyna Pluta, Zygmunt Ba K, Piotr Szczepanik, Dominik Szczȩśniak\",\"doi\":\"10.3390/e27040410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, the cumulative effect of the empirical probability distribution of a random variable is identified as a factor that amplifies the occurrence of extreme events in datasets. To quantify this observation, a corresponding information measure is introduced, drawing upon Shannon entropy for joint probabilities. The proposed approach is validated using selected market data as case studies, encompassing various instances of extreme events. In particular, the results indicate that the introduced cumulative measure exhibits distinctive signatures of such events, even when the data are relatively noisy. These findings highlight the potential of the discussed concept for developing a new class of related indicators or classifiers.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026119/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040410\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040410","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,随机变量的经验概率分布的累积效应被确定为一个放大数据集中极端事件发生的因素。为了量化这一观察结果,引入了相应的信息度量,利用香农熵来计算联合概率。采用选定的市场数据作为案例研究,包括各种极端事件的实例,验证了所提出的方法。特别是,结果表明,即使在数据相对嘈杂的情况下,引入的累积测量也显示出这些事件的独特特征。这些发现突出了所讨论的概念在开发一类新的相关指标或分类器方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signatures of Extreme Events in Cumulative Entropic Spectrum.

In this study, the cumulative effect of the empirical probability distribution of a random variable is identified as a factor that amplifies the occurrence of extreme events in datasets. To quantify this observation, a corresponding information measure is introduced, drawing upon Shannon entropy for joint probabilities. The proposed approach is validated using selected market data as case studies, encompassing various instances of extreme events. In particular, the results indicate that the introduced cumulative measure exhibits distinctive signatures of such events, even when the data are relatively noisy. These findings highlight the potential of the discussed concept for developing a new class of related indicators or classifiers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信