Neele Brümmer, Katharina Doll-Nikutta, Patrik Schadzek, Carina Mikolai, Andreas Kampmann, Dagmar Wirth, Andrea Hoffmann, Philipp-Cornelius Pott, Oliver Karras, Sören Auer, Meike Stiesch
{"title":"更好的模型,更好的治疗?对目前植入物相关感染的三维(3D)体外模型进行系统回顾。","authors":"Neele Brümmer, Katharina Doll-Nikutta, Patrik Schadzek, Carina Mikolai, Andreas Kampmann, Dagmar Wirth, Andrea Hoffmann, Philipp-Cornelius Pott, Oliver Karras, Sören Auer, Meike Stiesch","doi":"10.3389/fbioe.2025.1569211","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Understanding the biology of implant-associated infections is essential in order to provide adequate detection, prevention and therapeutic strategies. Advanced 3D in vitro models offer valuable insights into the complex interactions between cells and bacteria in the presence of implant materials. This review aims to give a comprehensive overview of current 3D in vitro models that mimic implant-associated infections.</p><p><strong>Methods: </strong>The structured literature search initially identified 258 publications, seven of which fitted the inclusion criteria.</p><p><strong>Results: </strong>The included 3D models were established either to mimic the in vivo situation (organotypic model) or to investigate future implant materials. In three studies, organotypic models for dental implants were created and one study described an organotypic model containing immune cells. In the remaining three studies, biomaterials for constructing future orthopedic implants were developed and tested. All authors included specific cells and bacteria suitable for the respective implants. The dental implant models used fibroblasts and keratinocytes; the orthopedic implant models used stem cells and fibroblast-like cells; the model containing immune cells incorporated co-cultivation of fibroblasts and THP-1 derived macrophages. For bacterial challenge, most authors used Gram positive bacteria, but three studies employed Gram negative bacterial species. A wide variety of analytical methods of different complexity were applied after co-culture of cells and bacteria and between one and five different methods were used.</p><p><strong>Discussion: </strong>All models could be employed to provide answers to specific scientific questions regarding implant-associated infections. Nonetheless, this review reveals the limitations of current 3D models for the investigation of implant-associated infections and highlights the opportunities for further development in this scientific field.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1569211"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061920/pdf/","citationCount":"0","resultStr":"{\"title\":\"Better models, better treatment? a systematic review of current three dimensional (3D) <i>in vitro</i> models for implant-associated infections.\",\"authors\":\"Neele Brümmer, Katharina Doll-Nikutta, Patrik Schadzek, Carina Mikolai, Andreas Kampmann, Dagmar Wirth, Andrea Hoffmann, Philipp-Cornelius Pott, Oliver Karras, Sören Auer, Meike Stiesch\",\"doi\":\"10.3389/fbioe.2025.1569211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Understanding the biology of implant-associated infections is essential in order to provide adequate detection, prevention and therapeutic strategies. Advanced 3D in vitro models offer valuable insights into the complex interactions between cells and bacteria in the presence of implant materials. This review aims to give a comprehensive overview of current 3D in vitro models that mimic implant-associated infections.</p><p><strong>Methods: </strong>The structured literature search initially identified 258 publications, seven of which fitted the inclusion criteria.</p><p><strong>Results: </strong>The included 3D models were established either to mimic the in vivo situation (organotypic model) or to investigate future implant materials. In three studies, organotypic models for dental implants were created and one study described an organotypic model containing immune cells. In the remaining three studies, biomaterials for constructing future orthopedic implants were developed and tested. All authors included specific cells and bacteria suitable for the respective implants. The dental implant models used fibroblasts and keratinocytes; the orthopedic implant models used stem cells and fibroblast-like cells; the model containing immune cells incorporated co-cultivation of fibroblasts and THP-1 derived macrophages. For bacterial challenge, most authors used Gram positive bacteria, but three studies employed Gram negative bacterial species. A wide variety of analytical methods of different complexity were applied after co-culture of cells and bacteria and between one and five different methods were used.</p><p><strong>Discussion: </strong>All models could be employed to provide answers to specific scientific questions regarding implant-associated infections. Nonetheless, this review reveals the limitations of current 3D models for the investigation of implant-associated infections and highlights the opportunities for further development in this scientific field.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1569211\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061920/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1569211\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1569211","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Better models, better treatment? a systematic review of current three dimensional (3D) in vitro models for implant-associated infections.
Introduction: Understanding the biology of implant-associated infections is essential in order to provide adequate detection, prevention and therapeutic strategies. Advanced 3D in vitro models offer valuable insights into the complex interactions between cells and bacteria in the presence of implant materials. This review aims to give a comprehensive overview of current 3D in vitro models that mimic implant-associated infections.
Methods: The structured literature search initially identified 258 publications, seven of which fitted the inclusion criteria.
Results: The included 3D models were established either to mimic the in vivo situation (organotypic model) or to investigate future implant materials. In three studies, organotypic models for dental implants were created and one study described an organotypic model containing immune cells. In the remaining three studies, biomaterials for constructing future orthopedic implants were developed and tested. All authors included specific cells and bacteria suitable for the respective implants. The dental implant models used fibroblasts and keratinocytes; the orthopedic implant models used stem cells and fibroblast-like cells; the model containing immune cells incorporated co-cultivation of fibroblasts and THP-1 derived macrophages. For bacterial challenge, most authors used Gram positive bacteria, but three studies employed Gram negative bacterial species. A wide variety of analytical methods of different complexity were applied after co-culture of cells and bacteria and between one and five different methods were used.
Discussion: All models could be employed to provide answers to specific scientific questions regarding implant-associated infections. Nonetheless, this review reveals the limitations of current 3D models for the investigation of implant-associated infections and highlights the opportunities for further development in this scientific field.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.