Panagiota M Kalligosfyri, Antonella Miglione, Alessia Esposito, Raghad Alhardan, Gabriella Iula, Iclal Atay, Ibrahim A Darwish, Sevinc Kurbanoglu, Stefano Cinti
{"title":"用于生物医学应用的生物流体中碱性磷酸酶检测的柔性丝网印刷电化学传感器。","authors":"Panagiota M Kalligosfyri, Antonella Miglione, Alessia Esposito, Raghad Alhardan, Gabriella Iula, Iclal Atay, Ibrahim A Darwish, Sevinc Kurbanoglu, Stefano Cinti","doi":"10.1002/open.202500113","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaline phosphatase (ALP) is an enzyme present in the human body responsible for the dephosphorylation of phosphorylated chemical species. It is primarily expressed in organs such as bones, liver, intestine, and placenta during pregnancy, playing a crucial role in cellular processes like gene expression, transport, and metabolism. Physiological ALP levels vary with age and sex, with normal serum ranges for healthy adults between 40 and 190 U/L. Alterations in ALP levels can be indicative of several pathologies, including cancer diagnosis and metastasis, as well as bone growth dysfunctions and hypophosphatasia. Conventional methods for ALP detection often require complex assay principles, extensive sample pretreatment, and trained personnel. Herein, the development of a portable, flexible electrochemical sensor fabricated through screen-printing to monitor ALP levels in biological samples is introduced. The flexible electrochemical sensor, characterized by high efficiency, sustainability, low cost, and ease of disposal, achieves detection limit as low as 0.03 and 0.08 U/L, respectively, in buffer solution and human serum samples, and a satisfactory repeatability lower than 10%. This simple sensor configuration approach enables real-time disease monitoring and improves access to point-of-care diagnostics, paving the way for affordable, decentralized sensors that support early diagnosis and better healthcare.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e2500113"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Screen-Printed Electrochemical Sensor for Alkaline Phosphatase Detection in Biofluids for Biomedical Applications.\",\"authors\":\"Panagiota M Kalligosfyri, Antonella Miglione, Alessia Esposito, Raghad Alhardan, Gabriella Iula, Iclal Atay, Ibrahim A Darwish, Sevinc Kurbanoglu, Stefano Cinti\",\"doi\":\"10.1002/open.202500113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alkaline phosphatase (ALP) is an enzyme present in the human body responsible for the dephosphorylation of phosphorylated chemical species. It is primarily expressed in organs such as bones, liver, intestine, and placenta during pregnancy, playing a crucial role in cellular processes like gene expression, transport, and metabolism. Physiological ALP levels vary with age and sex, with normal serum ranges for healthy adults between 40 and 190 U/L. Alterations in ALP levels can be indicative of several pathologies, including cancer diagnosis and metastasis, as well as bone growth dysfunctions and hypophosphatasia. Conventional methods for ALP detection often require complex assay principles, extensive sample pretreatment, and trained personnel. Herein, the development of a portable, flexible electrochemical sensor fabricated through screen-printing to monitor ALP levels in biological samples is introduced. The flexible electrochemical sensor, characterized by high efficiency, sustainability, low cost, and ease of disposal, achieves detection limit as low as 0.03 and 0.08 U/L, respectively, in buffer solution and human serum samples, and a satisfactory repeatability lower than 10%. This simple sensor configuration approach enables real-time disease monitoring and improves access to point-of-care diagnostics, paving the way for affordable, decentralized sensors that support early diagnosis and better healthcare.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\" \",\"pages\":\"e2500113\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/open.202500113\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202500113","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Flexible Screen-Printed Electrochemical Sensor for Alkaline Phosphatase Detection in Biofluids for Biomedical Applications.
Alkaline phosphatase (ALP) is an enzyme present in the human body responsible for the dephosphorylation of phosphorylated chemical species. It is primarily expressed in organs such as bones, liver, intestine, and placenta during pregnancy, playing a crucial role in cellular processes like gene expression, transport, and metabolism. Physiological ALP levels vary with age and sex, with normal serum ranges for healthy adults between 40 and 190 U/L. Alterations in ALP levels can be indicative of several pathologies, including cancer diagnosis and metastasis, as well as bone growth dysfunctions and hypophosphatasia. Conventional methods for ALP detection often require complex assay principles, extensive sample pretreatment, and trained personnel. Herein, the development of a portable, flexible electrochemical sensor fabricated through screen-printing to monitor ALP levels in biological samples is introduced. The flexible electrochemical sensor, characterized by high efficiency, sustainability, low cost, and ease of disposal, achieves detection limit as low as 0.03 and 0.08 U/L, respectively, in buffer solution and human serum samples, and a satisfactory repeatability lower than 10%. This simple sensor configuration approach enables real-time disease monitoring and improves access to point-of-care diagnostics, paving the way for affordable, decentralized sensors that support early diagnosis and better healthcare.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.