Si Woo Lee, Hyunki Park, Minyoung Lee, Hyangkyu Lee, Eun Seok Kang
{"title":"钠-葡萄糖共转运蛋白-2抑制剂通过AMPK-SIRT1激活和自噬诱导增强肝脏糖异生和减少脂质积累。","authors":"Si Woo Lee, Hyunki Park, Minyoung Lee, Hyangkyu Lee, Eun Seok Kang","doi":"10.3803/EnM.2024.2223","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sodium-glucose cotransporter type 2 (SGLT2) inhibitors, such as dapagliflozin, are primarily used to lower glucose in type 2 diabetes. Recent studies suggest broader metabolic effects, particularly in the liver. This study explores the molecular mechanisms by which dapagliflozin influences hepatic glucose and lipid metabolism, hypothesizing that it activates the 5'-adenosine monophosphate-activated protein kinase (AMPK)-sirtuin 1 (Sirt1) pathway to promote gluconeogenesis and reduce lipid accumulation via autophagy.</p><p><strong>Methods: </strong>HepG2 hepatocellular carcinoma cells were treated with dapagliflozin, and Western blotting, quantitative reverse transcription polymerase chain reaction, and fluorescence microscopy were used to assess gluconeogenic enzyme expression and autophagy. In vivo, mice with liver-specific autophagy related 7 (Atg7) deletion and those on a high-fat diet were used to evaluate glucose regulation, lipid metabolism, and autophagy.</p><p><strong>Results: </strong>Dapagliflozin significantly increased expression of gluconeogenic enzymes like phosphoenolpyruvate carboxykinase (PEPCK) in HepG2 cells and enhanced autophagic flux, evidenced by increased light chain 3B (LC3B)-II levels and autophagosome formation. AMPK-Sirt1 activation was confirmed as the underlying mechanism. Additionally, dapagliflozin reduced fatty acid synthesis by suppressing enzymes such as acetyl-CoA carboxylase and fatty acid synthase, while promoting fatty acid degradation via carnitine palmitoyltransferase 1α (CPT1α) upregulation. In high-fat diet mice, dapagliflozin increased hepatic gluconeogenesis and reduced lipid accumulation, though serum cholesterol and triglyceride levels were unaffected.</p><p><strong>Conclusion: </strong>Dapagliflozin enhances hepatic gluconeogenesis and reduces steatosis by activating the AMPK-Sirt1 pathway and promoting autophagy. These findings suggest that SGLT2 inhibitors could offer therapeutic benefits for managing hepatic lipid disorders, beyond glycemic control.</p>","PeriodicalId":11636,"journal":{"name":"Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium-Glucose Cotransporter-2 Inhibitor Enhances Hepatic Gluconeogenesis and Reduces Lipid Accumulation via AMPK-SIRT1 Activation and Autophagy Induction.\",\"authors\":\"Si Woo Lee, Hyunki Park, Minyoung Lee, Hyangkyu Lee, Eun Seok Kang\",\"doi\":\"10.3803/EnM.2024.2223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sodium-glucose cotransporter type 2 (SGLT2) inhibitors, such as dapagliflozin, are primarily used to lower glucose in type 2 diabetes. Recent studies suggest broader metabolic effects, particularly in the liver. This study explores the molecular mechanisms by which dapagliflozin influences hepatic glucose and lipid metabolism, hypothesizing that it activates the 5'-adenosine monophosphate-activated protein kinase (AMPK)-sirtuin 1 (Sirt1) pathway to promote gluconeogenesis and reduce lipid accumulation via autophagy.</p><p><strong>Methods: </strong>HepG2 hepatocellular carcinoma cells were treated with dapagliflozin, and Western blotting, quantitative reverse transcription polymerase chain reaction, and fluorescence microscopy were used to assess gluconeogenic enzyme expression and autophagy. In vivo, mice with liver-specific autophagy related 7 (Atg7) deletion and those on a high-fat diet were used to evaluate glucose regulation, lipid metabolism, and autophagy.</p><p><strong>Results: </strong>Dapagliflozin significantly increased expression of gluconeogenic enzymes like phosphoenolpyruvate carboxykinase (PEPCK) in HepG2 cells and enhanced autophagic flux, evidenced by increased light chain 3B (LC3B)-II levels and autophagosome formation. AMPK-Sirt1 activation was confirmed as the underlying mechanism. Additionally, dapagliflozin reduced fatty acid synthesis by suppressing enzymes such as acetyl-CoA carboxylase and fatty acid synthase, while promoting fatty acid degradation via carnitine palmitoyltransferase 1α (CPT1α) upregulation. In high-fat diet mice, dapagliflozin increased hepatic gluconeogenesis and reduced lipid accumulation, though serum cholesterol and triglyceride levels were unaffected.</p><p><strong>Conclusion: </strong>Dapagliflozin enhances hepatic gluconeogenesis and reduces steatosis by activating the AMPK-Sirt1 pathway and promoting autophagy. These findings suggest that SGLT2 inhibitors could offer therapeutic benefits for managing hepatic lipid disorders, beyond glycemic control.</p>\",\"PeriodicalId\":11636,\"journal\":{\"name\":\"Endocrinology and Metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3803/EnM.2024.2223\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3803/EnM.2024.2223","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Sodium-Glucose Cotransporter-2 Inhibitor Enhances Hepatic Gluconeogenesis and Reduces Lipid Accumulation via AMPK-SIRT1 Activation and Autophagy Induction.
Background: Sodium-glucose cotransporter type 2 (SGLT2) inhibitors, such as dapagliflozin, are primarily used to lower glucose in type 2 diabetes. Recent studies suggest broader metabolic effects, particularly in the liver. This study explores the molecular mechanisms by which dapagliflozin influences hepatic glucose and lipid metabolism, hypothesizing that it activates the 5'-adenosine monophosphate-activated protein kinase (AMPK)-sirtuin 1 (Sirt1) pathway to promote gluconeogenesis and reduce lipid accumulation via autophagy.
Methods: HepG2 hepatocellular carcinoma cells were treated with dapagliflozin, and Western blotting, quantitative reverse transcription polymerase chain reaction, and fluorescence microscopy were used to assess gluconeogenic enzyme expression and autophagy. In vivo, mice with liver-specific autophagy related 7 (Atg7) deletion and those on a high-fat diet were used to evaluate glucose regulation, lipid metabolism, and autophagy.
Results: Dapagliflozin significantly increased expression of gluconeogenic enzymes like phosphoenolpyruvate carboxykinase (PEPCK) in HepG2 cells and enhanced autophagic flux, evidenced by increased light chain 3B (LC3B)-II levels and autophagosome formation. AMPK-Sirt1 activation was confirmed as the underlying mechanism. Additionally, dapagliflozin reduced fatty acid synthesis by suppressing enzymes such as acetyl-CoA carboxylase and fatty acid synthase, while promoting fatty acid degradation via carnitine palmitoyltransferase 1α (CPT1α) upregulation. In high-fat diet mice, dapagliflozin increased hepatic gluconeogenesis and reduced lipid accumulation, though serum cholesterol and triglyceride levels were unaffected.
Conclusion: Dapagliflozin enhances hepatic gluconeogenesis and reduces steatosis by activating the AMPK-Sirt1 pathway and promoting autophagy. These findings suggest that SGLT2 inhibitors could offer therapeutic benefits for managing hepatic lipid disorders, beyond glycemic control.
期刊介绍:
The aim of this journal is to set high standards of medical care by providing a forum for discussion for basic, clinical, and translational researchers and clinicians on new findings in the fields of endocrinology and metabolism. Endocrinology and Metabolism reports new findings and developments in all aspects of endocrinology and metabolism. The topics covered by this journal include bone and mineral metabolism, cytokines, developmental endocrinology, diagnostic endocrinology, endocrine research, dyslipidemia, endocrine regulation, genetic endocrinology, growth factors, hormone receptors, hormone action and regulation, management of endocrine diseases, clinical trials, epidemiology, molecular endocrinology, neuroendocrinology, neuropeptides, neurotransmitters, obesity, pediatric endocrinology, reproductive endocrinology, signal transduction, the anatomy and physiology of endocrine organs (i.e., the pituitary, thyroid, parathyroid, and adrenal glands, and the gonads), and endocrine diseases (diabetes, nutrition, osteoporosis, etc.).