不同纳米氧化铁负载的碳材料对好氧颗粒污泥系统的影响。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Kai-Peng Deng, Jun-Guo He, Wei-Xun Jiang, Xin-Ping Liu, Zhi-Han Gong, Yu Zhang, Ya-Qing Xu
{"title":"不同纳米氧化铁负载的碳材料对好氧颗粒污泥系统的影响。","authors":"Kai-Peng Deng, Jun-Guo He, Wei-Xun Jiang, Xin-Ping Liu, Zhi-Han Gong, Yu Zhang, Ya-Qing Xu","doi":"10.1080/09593330.2025.2482078","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated iron oxide-loaded powdered activated carbon (FONP-PAC) with varying Fe/C ratios (FC1 in S1, FC2 in S2) in aerobic granular sludge (AGS) systems. S2 achieved the fastest sludge growth, reaching 1106 μm by day 80 (87.14% larger than control S0). During stable operation, S2 exhibited superior pollutant removal: 95.96% COD, 100% NH4+-N, and 79.53% TN removal, alongside the highest aerobic denitrification rate (9.93 mg·gVSS⁻¹·h⁻¹, 71.68% above S0). Comparatively, S1 showed slightly lower efficiencies (94.20% COD, 100% NH4+-N, 71.50% TN) and denitrification activity (8.35 mg·gVSS⁻¹·h⁻¹). Microbial analysis revealed enriched Bacteroidota phyla and sustained Zoogloea genus abundance in FONP-PAC reactors. Higher iron oxide loading enhanced interspecies electron transfer, accelerating granule growth and nitrogen removal. Larger granules in S2 promoted stratified microbial niches, improving oxygen gradient-dependent processes like simultaneous nitrification-denitrification. These findings demonstrate that optimized FONP-PAC dosing strengthens sludge structure and metabolic synergy, achieving dual benefits of rapid granulation and high-efficiency nutrient removal through physicochemical-microbial interactions. The study provides insights into nano-material mediated AGS enhancement for wastewater treatment optimization.HighlightsThe threshold effect of nano-iron oxide loading on the granulation rate of AGS (Anaerobic Granular Sludge) was revealed.The mechanism by which FONP-PAC (Functionalized Oxide Nanoparticles-Polymeric Aluminum Chloride) promotes interspecies electron transfer through a conductive network was elucidatedA strategy for the targeted enrichment of Thauera and Zoogloea by the material was proposed.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-12"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of carbon materials with different nano-iron oxide loadings on aerobic granular sludge systems.\",\"authors\":\"Kai-Peng Deng, Jun-Guo He, Wei-Xun Jiang, Xin-Ping Liu, Zhi-Han Gong, Yu Zhang, Ya-Qing Xu\",\"doi\":\"10.1080/09593330.2025.2482078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated iron oxide-loaded powdered activated carbon (FONP-PAC) with varying Fe/C ratios (FC1 in S1, FC2 in S2) in aerobic granular sludge (AGS) systems. S2 achieved the fastest sludge growth, reaching 1106 μm by day 80 (87.14% larger than control S0). During stable operation, S2 exhibited superior pollutant removal: 95.96% COD, 100% NH4+-N, and 79.53% TN removal, alongside the highest aerobic denitrification rate (9.93 mg·gVSS⁻¹·h⁻¹, 71.68% above S0). Comparatively, S1 showed slightly lower efficiencies (94.20% COD, 100% NH4+-N, 71.50% TN) and denitrification activity (8.35 mg·gVSS⁻¹·h⁻¹). Microbial analysis revealed enriched Bacteroidota phyla and sustained Zoogloea genus abundance in FONP-PAC reactors. Higher iron oxide loading enhanced interspecies electron transfer, accelerating granule growth and nitrogen removal. Larger granules in S2 promoted stratified microbial niches, improving oxygen gradient-dependent processes like simultaneous nitrification-denitrification. These findings demonstrate that optimized FONP-PAC dosing strengthens sludge structure and metabolic synergy, achieving dual benefits of rapid granulation and high-efficiency nutrient removal through physicochemical-microbial interactions. The study provides insights into nano-material mediated AGS enhancement for wastewater treatment optimization.HighlightsThe threshold effect of nano-iron oxide loading on the granulation rate of AGS (Anaerobic Granular Sludge) was revealed.The mechanism by which FONP-PAC (Functionalized Oxide Nanoparticles-Polymeric Aluminum Chloride) promotes interspecies electron transfer through a conductive network was elucidatedA strategy for the targeted enrichment of Thauera and Zoogloea by the material was proposed.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2482078\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2482078","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了好氧颗粒污泥(AGS)系统中负载氧化铁的粉末活性炭(FONP-PAC)具有不同的铁/碳比(S1中FC1, S2中FC2)。S2污泥生长最快,第80天达到1106 μm(比对照S0大87.14%)。在稳定运行期间,S2表现出优异的污染物去除率:COD去除率95.96%,NH4+-N去除率100%,TN去除率79.53%,好氧反硝化率最高(9.93 mg·gVSS⁻¹·h⁻,高于S0的71.68%)。相比之下,S1的效率略低(COD为94.20%,NH4+-N为100%,TN为71.50%)和反硝化活性(8.35 mg·gVSS⁻¹·h⁻¹)。微生物分析结果显示,在FONP-PAC反应器中,拟杆菌门(Bacteroidota)丰富,动物门(zogloea genus)持续丰富。较高的氧化铁负荷增强了种间电子传递,加速了颗粒的生长和氮的去除。S2中较大的颗粒促进了微生物生态位的分层,改善了同时硝化-反硝化等氧梯度依赖过程。这些研究结果表明,优化的FONP-PAC投加量增强了污泥结构和代谢协同作用,通过物理化学-微生物相互作用实现了快速造粒和高效去除营养物质的双重效益。该研究为纳米材料介导的AGS增强废水处理优化提供了见解。研究了纳米氧化铁负载对厌氧颗粒污泥制粒率的阈值效应。阐明了功能化氧化纳米颗粒-聚合氯化铝(FONP-PAC)通过导电网络促进种间电子转移的机理,并提出了该材料靶向富集Thauera和Zoogloea的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of carbon materials with different nano-iron oxide loadings on aerobic granular sludge systems.

This study investigated iron oxide-loaded powdered activated carbon (FONP-PAC) with varying Fe/C ratios (FC1 in S1, FC2 in S2) in aerobic granular sludge (AGS) systems. S2 achieved the fastest sludge growth, reaching 1106 μm by day 80 (87.14% larger than control S0). During stable operation, S2 exhibited superior pollutant removal: 95.96% COD, 100% NH4+-N, and 79.53% TN removal, alongside the highest aerobic denitrification rate (9.93 mg·gVSS⁻¹·h⁻¹, 71.68% above S0). Comparatively, S1 showed slightly lower efficiencies (94.20% COD, 100% NH4+-N, 71.50% TN) and denitrification activity (8.35 mg·gVSS⁻¹·h⁻¹). Microbial analysis revealed enriched Bacteroidota phyla and sustained Zoogloea genus abundance in FONP-PAC reactors. Higher iron oxide loading enhanced interspecies electron transfer, accelerating granule growth and nitrogen removal. Larger granules in S2 promoted stratified microbial niches, improving oxygen gradient-dependent processes like simultaneous nitrification-denitrification. These findings demonstrate that optimized FONP-PAC dosing strengthens sludge structure and metabolic synergy, achieving dual benefits of rapid granulation and high-efficiency nutrient removal through physicochemical-microbial interactions. The study provides insights into nano-material mediated AGS enhancement for wastewater treatment optimization.HighlightsThe threshold effect of nano-iron oxide loading on the granulation rate of AGS (Anaerobic Granular Sludge) was revealed.The mechanism by which FONP-PAC (Functionalized Oxide Nanoparticles-Polymeric Aluminum Chloride) promotes interspecies electron transfer through a conductive network was elucidatedA strategy for the targeted enrichment of Thauera and Zoogloea by the material was proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信