育龄妇女阴道念珠菌病的抗真菌耐药性研究进展

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Utkalika Mallick, Binay Krushna Sahu, Rashmi Hegde, Prativa Jena, Jyotirmayee Turuk, Mahesh Chandra Sahu, Sujogya Kumar Panda
{"title":"育龄妇女阴道念珠菌病的抗真菌耐药性研究进展","authors":"Utkalika Mallick, Binay Krushna Sahu, Rashmi Hegde, Prativa Jena, Jyotirmayee Turuk, Mahesh Chandra Sahu, Sujogya Kumar Panda","doi":"10.2174/0113892010368329250503175104","DOIUrl":null,"url":null,"abstract":"<p><p>Candida is a type of fungus that can cause infections in humans. Sometimes, these infections become tough to treat because the Candida fungus resists antifungal drugs. This resistance depends on both the specific type of Candida and how it interacts with the human body. For instance, Candida can change its genetic makeup or produce proteins that pump out the drugs, making them less effective. Additionally, Candida can form a protective layer called a biofilm, which shields it from the drugs. Candida can cause a variety of diseases, and vaginal candidiasis is among the most troublesome. Nearly every woman experiences this infection at least once in her lifetime. Higher rates of treatment failures and recurrent infections result from the developing issue of antifungal resistance, underscoring the need for a more thorough understanding of resistance mechanisms. Changes in hormonal levels and immune responses can significantly influence the effectiveness of antifungal treatments. Hormonal fluctuations can alter vaginal pH and immune functions, which in turn affects Candida colonization and persistence. Moreover, an imbalance in the vaginal microbiome can lead to an overgrowth of Candida and lead to the drug resistance candidiasis. This review delves into the molecular pathways that contribute to the resistance of vaginal candidiasis to antifungal treatments, focusing on both acquired and intrinsic resistance mechanisms. Acquired resistance develops due to genetic alterations following antifungal exposure, including mutations in genes encoding drug targets, overexpression of efflux pumps, and increased biofilm formation. In contrast, intrinsic resistance refers to the innate traits of the Candida species that inherently reduce the efficacy of antifungal agents. These characteristics include changes in membrane sterols, genetic mutations in target enzymes, and the presence of efflux pumps that remove antifungal medications. Understanding these complex mechanisms can inform future therapeutic strategies and improve clinical outcomes.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifungal Resistance in Vaginal Candidiasis Among Reproductive-age Women: A Review.\",\"authors\":\"Utkalika Mallick, Binay Krushna Sahu, Rashmi Hegde, Prativa Jena, Jyotirmayee Turuk, Mahesh Chandra Sahu, Sujogya Kumar Panda\",\"doi\":\"10.2174/0113892010368329250503175104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Candida is a type of fungus that can cause infections in humans. Sometimes, these infections become tough to treat because the Candida fungus resists antifungal drugs. This resistance depends on both the specific type of Candida and how it interacts with the human body. For instance, Candida can change its genetic makeup or produce proteins that pump out the drugs, making them less effective. Additionally, Candida can form a protective layer called a biofilm, which shields it from the drugs. Candida can cause a variety of diseases, and vaginal candidiasis is among the most troublesome. Nearly every woman experiences this infection at least once in her lifetime. Higher rates of treatment failures and recurrent infections result from the developing issue of antifungal resistance, underscoring the need for a more thorough understanding of resistance mechanisms. Changes in hormonal levels and immune responses can significantly influence the effectiveness of antifungal treatments. Hormonal fluctuations can alter vaginal pH and immune functions, which in turn affects Candida colonization and persistence. Moreover, an imbalance in the vaginal microbiome can lead to an overgrowth of Candida and lead to the drug resistance candidiasis. This review delves into the molecular pathways that contribute to the resistance of vaginal candidiasis to antifungal treatments, focusing on both acquired and intrinsic resistance mechanisms. Acquired resistance develops due to genetic alterations following antifungal exposure, including mutations in genes encoding drug targets, overexpression of efflux pumps, and increased biofilm formation. In contrast, intrinsic resistance refers to the innate traits of the Candida species that inherently reduce the efficacy of antifungal agents. These characteristics include changes in membrane sterols, genetic mutations in target enzymes, and the presence of efflux pumps that remove antifungal medications. Understanding these complex mechanisms can inform future therapeutic strategies and improve clinical outcomes.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010368329250503175104\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010368329250503175104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

念珠菌是一种能引起人类感染的真菌。有时,这些感染变得难以治疗,因为念珠菌真菌抵抗抗真菌药物。这种耐药性取决于念珠菌的具体类型以及它如何与人体相互作用。例如,念珠菌可以改变其基因组成或产生排出药物的蛋白质,从而降低药物的效果。此外,念珠菌可以形成一层被称为生物膜的保护层,使其免受药物的侵害。念珠菌可引起多种疾病,阴道念珠菌病是其中最麻烦的。几乎每个女性一生中都至少经历过一次这种感染。较高的治疗失败率和复发性感染是由于抗真菌耐药性问题的发展,强调需要更彻底地了解耐药性机制。激素水平和免疫反应的变化可以显著影响抗真菌治疗的有效性。荷尔蒙波动可以改变阴道pH值和免疫功能,进而影响念珠菌的定植和持续存在。此外,阴道微生物群的不平衡可导致念珠菌过度生长,导致耐药性念珠菌病。本文综述了阴道念珠菌对抗真菌治疗产生耐药性的分子途径,重点讨论了获得性和内在耐药性机制。获得性耐药是由于抗真菌暴露后的遗传改变而产生的,包括编码药物靶点的基因突变、外排泵的过度表达和生物膜形成的增加。相比之下,内在抗性是指念珠菌物种固有的特性,固有地降低抗真菌药物的功效。这些特征包括膜固醇的变化,靶酶的基因突变,以及清除抗真菌药物的外排泵的存在。了解这些复杂的机制可以为未来的治疗策略和改善临床结果提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antifungal Resistance in Vaginal Candidiasis Among Reproductive-age Women: A Review.

Candida is a type of fungus that can cause infections in humans. Sometimes, these infections become tough to treat because the Candida fungus resists antifungal drugs. This resistance depends on both the specific type of Candida and how it interacts with the human body. For instance, Candida can change its genetic makeup or produce proteins that pump out the drugs, making them less effective. Additionally, Candida can form a protective layer called a biofilm, which shields it from the drugs. Candida can cause a variety of diseases, and vaginal candidiasis is among the most troublesome. Nearly every woman experiences this infection at least once in her lifetime. Higher rates of treatment failures and recurrent infections result from the developing issue of antifungal resistance, underscoring the need for a more thorough understanding of resistance mechanisms. Changes in hormonal levels and immune responses can significantly influence the effectiveness of antifungal treatments. Hormonal fluctuations can alter vaginal pH and immune functions, which in turn affects Candida colonization and persistence. Moreover, an imbalance in the vaginal microbiome can lead to an overgrowth of Candida and lead to the drug resistance candidiasis. This review delves into the molecular pathways that contribute to the resistance of vaginal candidiasis to antifungal treatments, focusing on both acquired and intrinsic resistance mechanisms. Acquired resistance develops due to genetic alterations following antifungal exposure, including mutations in genes encoding drug targets, overexpression of efflux pumps, and increased biofilm formation. In contrast, intrinsic resistance refers to the innate traits of the Candida species that inherently reduce the efficacy of antifungal agents. These characteristics include changes in membrane sterols, genetic mutations in target enzymes, and the presence of efflux pumps that remove antifungal medications. Understanding these complex mechanisms can inform future therapeutic strategies and improve clinical outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信