植物次生代谢物(SMs)介导的防御反应研究进展

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Rubab Shabbir, Talha Javed, Wang Wenzhi, Chang Yating, Yang Benpeng, Shen Linbo, Sun Tingting, Zhang Shuzhen, Pinghua Chen
{"title":"植物次生代谢物(SMs)介导的防御反应研究进展","authors":"Rubab Shabbir, Talha Javed, Wang Wenzhi, Chang Yating, Yang Benpeng, Shen Linbo, Sun Tingting, Zhang Shuzhen, Pinghua Chen","doi":"10.1080/07388551.2025.2484598","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change induces various environmental stressors that restrict plant processes, thereby limiting overall crop productivity. Plant secondary metabolites (SMs) enable plants to quickly detect a broad array of environmental stressors and respond in accordance to rapidly changing environmental scenarios. Notably, SMs regulate defense signaling cascades and provide defensive functions to safeguard plants against various biotic and abiotic stressors. In this review, we provide an overview of insights into recent advances in types and biosynthetic pathways of SMs. We emphasize the mechanisms of different biotic and abiotic elicitors-induced SMs synthesis and accumulation to regulate defense responses. In addition, SMs-mediated regulation of plant processes act through phytohormones signaling cascades is discussed. Finally, we show that transcriptional factors regulating SMs biosynthesis and associated regulatory networks could be used for creating resilient plants. Overall, this comprehensive review gives insight into recent advances regarding crucial roles of SMs in enhanced resistance and provides new ideas for the development of stress-resistant varieties under current climate change scenarios.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-15"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into recent advances in secondary metabolites (SMs)-mediated defense responses in plants.\",\"authors\":\"Rubab Shabbir, Talha Javed, Wang Wenzhi, Chang Yating, Yang Benpeng, Shen Linbo, Sun Tingting, Zhang Shuzhen, Pinghua Chen\",\"doi\":\"10.1080/07388551.2025.2484598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change induces various environmental stressors that restrict plant processes, thereby limiting overall crop productivity. Plant secondary metabolites (SMs) enable plants to quickly detect a broad array of environmental stressors and respond in accordance to rapidly changing environmental scenarios. Notably, SMs regulate defense signaling cascades and provide defensive functions to safeguard plants against various biotic and abiotic stressors. In this review, we provide an overview of insights into recent advances in types and biosynthetic pathways of SMs. We emphasize the mechanisms of different biotic and abiotic elicitors-induced SMs synthesis and accumulation to regulate defense responses. In addition, SMs-mediated regulation of plant processes act through phytohormones signaling cascades is discussed. Finally, we show that transcriptional factors regulating SMs biosynthesis and associated regulatory networks could be used for creating resilient plants. Overall, this comprehensive review gives insight into recent advances regarding crucial roles of SMs in enhanced resistance and provides new ideas for the development of stress-resistant varieties under current climate change scenarios.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2025.2484598\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2025.2484598","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候变化引起各种环境压力因素,限制了植物的生长过程,从而限制了作物的整体生产力。植物次生代谢物(SMs)使植物能够快速检测各种环境胁迫因子,并根据快速变化的环境情景做出反应。值得注意的是,SMs调节防御信号级联并提供防御功能,以保护植物免受各种生物和非生物胁迫。在这篇综述中,我们提供了最近的研究进展的见解的类型和生物合成途径的SMs。我们强调了不同的生物和非生物激发物诱导的SMs合成和积累调节防御反应的机制。此外,sms介导的植物过程调节通过植物激素信号级联进行了讨论。最后,我们证明了调节SMs生物合成的转录因子和相关的调控网络可以用于创建抗逆性植物。综上所述,本文综述了短粒小麦在抗逆性增强中的重要作用,并为当前气候变化情景下抗逆性品种的开发提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into recent advances in secondary metabolites (SMs)-mediated defense responses in plants.

Climate change induces various environmental stressors that restrict plant processes, thereby limiting overall crop productivity. Plant secondary metabolites (SMs) enable plants to quickly detect a broad array of environmental stressors and respond in accordance to rapidly changing environmental scenarios. Notably, SMs regulate defense signaling cascades and provide defensive functions to safeguard plants against various biotic and abiotic stressors. In this review, we provide an overview of insights into recent advances in types and biosynthetic pathways of SMs. We emphasize the mechanisms of different biotic and abiotic elicitors-induced SMs synthesis and accumulation to regulate defense responses. In addition, SMs-mediated regulation of plant processes act through phytohormones signaling cascades is discussed. Finally, we show that transcriptional factors regulating SMs biosynthesis and associated regulatory networks could be used for creating resilient plants. Overall, this comprehensive review gives insight into recent advances regarding crucial roles of SMs in enhanced resistance and provides new ideas for the development of stress-resistant varieties under current climate change scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信