{"title":"基于跨模态表示模型的RGB-T目标检测网络。","authors":"Yubin Li, Weida Zhan, Yichun Jiang, Jinxin Guo","doi":"10.3390/e27040442","DOIUrl":null,"url":null,"abstract":"<p><p>RGB-thermal object detection harnesses complementary information from visible and thermal modalities to enhance detection robustness in challenging environments, particularly under low-light conditions. However, existing approaches suffer from limitations due to their heavy dependence on precisely registered data and insufficient handling of cross-modal distribution disparities. This paper presents RDCRNet, a novel framework incorporating a Cross-Modal Representation Model to effectively address these challenges. The proposed network features a Cross-Modal Feature Remapping Module that aligns modality distributions through statistical normalization and learnable correction parameters, significantly reducing feature discrepancies between modalities. A Cross-Modal Refinement and Interaction Module enables sophisticated bidirectional information exchange via trinity refinement for intra-modal context modeling and cross-attention mechanisms for unaligned feature fusion. Multiscale detection capability is enhanced through a Cross-Scale Feature Integration Module, improving detection performance across various object sizes. To overcome the inherent data scarcity in RGB-T detection, we introduce a self-supervised pretraining strategy that combines masked reconstruction with adversarial learning and semantic consistency loss, effectively leveraging both aligned and unaligned RGB-T samples. Extensive experiments demonstrate that RDCRNet achieves state-of-the-art performance on multiple benchmark datasets while maintaining high computational and storage efficiency, validating its superiority and practical effectiveness in real-world applications.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027132/pdf/","citationCount":"0","resultStr":"{\"title\":\"RDCRNet: RGB-T Object Detection Network Based on Cross-Modal Representation Model.\",\"authors\":\"Yubin Li, Weida Zhan, Yichun Jiang, Jinxin Guo\",\"doi\":\"10.3390/e27040442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RGB-thermal object detection harnesses complementary information from visible and thermal modalities to enhance detection robustness in challenging environments, particularly under low-light conditions. However, existing approaches suffer from limitations due to their heavy dependence on precisely registered data and insufficient handling of cross-modal distribution disparities. This paper presents RDCRNet, a novel framework incorporating a Cross-Modal Representation Model to effectively address these challenges. The proposed network features a Cross-Modal Feature Remapping Module that aligns modality distributions through statistical normalization and learnable correction parameters, significantly reducing feature discrepancies between modalities. A Cross-Modal Refinement and Interaction Module enables sophisticated bidirectional information exchange via trinity refinement for intra-modal context modeling and cross-attention mechanisms for unaligned feature fusion. Multiscale detection capability is enhanced through a Cross-Scale Feature Integration Module, improving detection performance across various object sizes. To overcome the inherent data scarcity in RGB-T detection, we introduce a self-supervised pretraining strategy that combines masked reconstruction with adversarial learning and semantic consistency loss, effectively leveraging both aligned and unaligned RGB-T samples. Extensive experiments demonstrate that RDCRNet achieves state-of-the-art performance on multiple benchmark datasets while maintaining high computational and storage efficiency, validating its superiority and practical effectiveness in real-world applications.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027132/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040442\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040442","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
RDCRNet: RGB-T Object Detection Network Based on Cross-Modal Representation Model.
RGB-thermal object detection harnesses complementary information from visible and thermal modalities to enhance detection robustness in challenging environments, particularly under low-light conditions. However, existing approaches suffer from limitations due to their heavy dependence on precisely registered data and insufficient handling of cross-modal distribution disparities. This paper presents RDCRNet, a novel framework incorporating a Cross-Modal Representation Model to effectively address these challenges. The proposed network features a Cross-Modal Feature Remapping Module that aligns modality distributions through statistical normalization and learnable correction parameters, significantly reducing feature discrepancies between modalities. A Cross-Modal Refinement and Interaction Module enables sophisticated bidirectional information exchange via trinity refinement for intra-modal context modeling and cross-attention mechanisms for unaligned feature fusion. Multiscale detection capability is enhanced through a Cross-Scale Feature Integration Module, improving detection performance across various object sizes. To overcome the inherent data scarcity in RGB-T detection, we introduce a self-supervised pretraining strategy that combines masked reconstruction with adversarial learning and semantic consistency loss, effectively leveraging both aligned and unaligned RGB-T samples. Extensive experiments demonstrate that RDCRNet achieves state-of-the-art performance on multiple benchmark datasets while maintaining high computational and storage efficiency, validating its superiority and practical effectiveness in real-world applications.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.