Robert Doorly, Joshua Ong, Ethan Waisberg, Prithul Sarker, Nasif Zaman, Alireza Tavakkoli, Andrew G Lee
{"title":"生成对抗网络在眼科疾病的诊断、预后和治疗中的应用。","authors":"Robert Doorly, Joshua Ong, Ethan Waisberg, Prithul Sarker, Nasif Zaman, Alireza Tavakkoli, Andrew G Lee","doi":"10.1007/s00417-025-06830-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Generative adversarial networks (GANs) are key components of many artificial intelligence (AI) systems that are applied to image-informed bioengineering and medicine. GANs combat key limitations facing deep learning models: small, unbalanced datasets containing few images of severe disease. The predictive capacity of conditional GANs may also be extremely useful in managing disease on an individual basis. This narrative review focusses on the application of GANs in ophthalmology, in order to provide a critical account of the current state and ongoing challenges for healthcare professionals and allied scientists who are interested in this rapidly evolving field.</p><p><strong>Methods: </strong>We performed a search of studies that apply generative adversarial networks (GANs) in diagnosis, therapy and prognosis of eight eye diseases. These disparate tasks were selected to highlight developments in GAN techniques, differences and common features to aid practitioners and future adopters in the field of ophthalmology.</p><p><strong>Results: </strong>The studies we identified show that GANs have demonstrated capacity to: generate realistic and useful synthetic images, convert image modality, improve image quality, enhance extraction of relevant features, and provide prognostic predictions based on input images and other relevant data.</p><p><strong>Conclusion: </strong>The broad range of architectures considered describe how GAN technology is evolving to meet different challenges (including segmentation and multi-modal imaging) that are of particular relevance to ophthalmology. The wide availability of datasets now facilitates the entry of new researchers to the field. However mainstream adoption of GAN technology for clinical use remains contingent on larger public datasets for widespread validation and necessary regulatory oversight.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of generative adversarial networks in the diagnosis, prognosis, and treatment of ophthalmic diseases.\",\"authors\":\"Robert Doorly, Joshua Ong, Ethan Waisberg, Prithul Sarker, Nasif Zaman, Alireza Tavakkoli, Andrew G Lee\",\"doi\":\"10.1007/s00417-025-06830-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Generative adversarial networks (GANs) are key components of many artificial intelligence (AI) systems that are applied to image-informed bioengineering and medicine. GANs combat key limitations facing deep learning models: small, unbalanced datasets containing few images of severe disease. The predictive capacity of conditional GANs may also be extremely useful in managing disease on an individual basis. This narrative review focusses on the application of GANs in ophthalmology, in order to provide a critical account of the current state and ongoing challenges for healthcare professionals and allied scientists who are interested in this rapidly evolving field.</p><p><strong>Methods: </strong>We performed a search of studies that apply generative adversarial networks (GANs) in diagnosis, therapy and prognosis of eight eye diseases. These disparate tasks were selected to highlight developments in GAN techniques, differences and common features to aid practitioners and future adopters in the field of ophthalmology.</p><p><strong>Results: </strong>The studies we identified show that GANs have demonstrated capacity to: generate realistic and useful synthetic images, convert image modality, improve image quality, enhance extraction of relevant features, and provide prognostic predictions based on input images and other relevant data.</p><p><strong>Conclusion: </strong>The broad range of architectures considered describe how GAN technology is evolving to meet different challenges (including segmentation and multi-modal imaging) that are of particular relevance to ophthalmology. The wide availability of datasets now facilitates the entry of new researchers to the field. However mainstream adoption of GAN technology for clinical use remains contingent on larger public datasets for widespread validation and necessary regulatory oversight.</p>\",\"PeriodicalId\":12795,\"journal\":{\"name\":\"Graefe’s Archive for Clinical and Experimental Ophthalmology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graefe’s Archive for Clinical and Experimental Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00417-025-06830-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-025-06830-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Applications of generative adversarial networks in the diagnosis, prognosis, and treatment of ophthalmic diseases.
Purpose: Generative adversarial networks (GANs) are key components of many artificial intelligence (AI) systems that are applied to image-informed bioengineering and medicine. GANs combat key limitations facing deep learning models: small, unbalanced datasets containing few images of severe disease. The predictive capacity of conditional GANs may also be extremely useful in managing disease on an individual basis. This narrative review focusses on the application of GANs in ophthalmology, in order to provide a critical account of the current state and ongoing challenges for healthcare professionals and allied scientists who are interested in this rapidly evolving field.
Methods: We performed a search of studies that apply generative adversarial networks (GANs) in diagnosis, therapy and prognosis of eight eye diseases. These disparate tasks were selected to highlight developments in GAN techniques, differences and common features to aid practitioners and future adopters in the field of ophthalmology.
Results: The studies we identified show that GANs have demonstrated capacity to: generate realistic and useful synthetic images, convert image modality, improve image quality, enhance extraction of relevant features, and provide prognostic predictions based on input images and other relevant data.
Conclusion: The broad range of architectures considered describe how GAN technology is evolving to meet different challenges (including segmentation and multi-modal imaging) that are of particular relevance to ophthalmology. The wide availability of datasets now facilitates the entry of new researchers to the field. However mainstream adoption of GAN technology for clinical use remains contingent on larger public datasets for widespread validation and necessary regulatory oversight.
期刊介绍:
Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.