基于隐马尔可夫模型的合成相耦合神经动力学中脑状态识别的鲁棒性。

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Frontiers in Systems Neuroscience Pub Date : 2025-04-24 eCollection Date: 2025-01-01 DOI:10.3389/fnsys.2025.1548437
Giulia Pieramico, Saeed Makkinayeri, Roberto Guidotti, Alessio Basti, Domenico Voso, Delia Lucarelli, Antea D'Andrea, Teresa L'Abbate, Gian Luca Romani, Vittorio Pizzella, Laura Marzetti
{"title":"基于隐马尔可夫模型的合成相耦合神经动力学中脑状态识别的鲁棒性。","authors":"Giulia Pieramico, Saeed Makkinayeri, Roberto Guidotti, Alessio Basti, Domenico Voso, Delia Lucarelli, Antea D'Andrea, Teresa L'Abbate, Gian Luca Romani, Vittorio Pizzella, Laura Marzetti","doi":"10.3389/fnsys.2025.1548437","DOIUrl":null,"url":null,"abstract":"<p><p>Hidden Markov Models (HMMs) have emerged as a powerful tool for analyzing time series of neural activity. Gaussian HMMs and their time-resolved extension, Time-Delay Embedded HMMs (TDE-HMMs), have been instrumental in detecting discrete brain states in the form of temporal sequences of large-scale brain networks. To assess the performance of Gaussian HMMs and TDE-HMMs in this context, we conducted simulations that generated synthetic data representing multiple phase-coupled interactions between different cortical regions to mimic real neural data. Our study demonstrates that TDE-HMM performs better than Gaussian HMM in accurately detecting brain states from synthetic phase-coupled interaction data. Finally, for TDE-HMMs, we manipulated key parameters such as phase coupling variability, state duration, and influence of volume conduction effect to evaluate the models' performance under varying conditions.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":"19 ","pages":"1548437"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058723/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robustness of brain state identification in synthetic phase-coupled neurodynamics using Hidden Markov Models.\",\"authors\":\"Giulia Pieramico, Saeed Makkinayeri, Roberto Guidotti, Alessio Basti, Domenico Voso, Delia Lucarelli, Antea D'Andrea, Teresa L'Abbate, Gian Luca Romani, Vittorio Pizzella, Laura Marzetti\",\"doi\":\"10.3389/fnsys.2025.1548437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hidden Markov Models (HMMs) have emerged as a powerful tool for analyzing time series of neural activity. Gaussian HMMs and their time-resolved extension, Time-Delay Embedded HMMs (TDE-HMMs), have been instrumental in detecting discrete brain states in the form of temporal sequences of large-scale brain networks. To assess the performance of Gaussian HMMs and TDE-HMMs in this context, we conducted simulations that generated synthetic data representing multiple phase-coupled interactions between different cortical regions to mimic real neural data. Our study demonstrates that TDE-HMM performs better than Gaussian HMM in accurately detecting brain states from synthetic phase-coupled interaction data. Finally, for TDE-HMMs, we manipulated key parameters such as phase coupling variability, state duration, and influence of volume conduction effect to evaluate the models' performance under varying conditions.</p>\",\"PeriodicalId\":12649,\"journal\":{\"name\":\"Frontiers in Systems Neuroscience\",\"volume\":\"19 \",\"pages\":\"1548437\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058723/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Systems Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnsys.2025.1548437\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2025.1548437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

隐马尔可夫模型(hmm)已成为分析神经活动时间序列的有力工具。高斯hmm及其时间分辨扩展,时延嵌入hmm (tde - hmm)在检测大规模脑网络时间序列形式的离散脑状态方面发挥了重要作用。为了评估高斯hmm和tde - hmm在这种情况下的性能,我们进行了模拟,生成了代表不同皮层区域之间多个相位耦合相互作用的合成数据,以模拟真实的神经数据。我们的研究表明,在从合成相耦合相互作用数据中准确检测大脑状态方面,TDE-HMM优于高斯HMM。最后,对于tde - hmm,我们通过控制相位耦合变异性、状态持续时间和体积传导效应的影响等关键参数来评估模型在不同条件下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness of brain state identification in synthetic phase-coupled neurodynamics using Hidden Markov Models.

Hidden Markov Models (HMMs) have emerged as a powerful tool for analyzing time series of neural activity. Gaussian HMMs and their time-resolved extension, Time-Delay Embedded HMMs (TDE-HMMs), have been instrumental in detecting discrete brain states in the form of temporal sequences of large-scale brain networks. To assess the performance of Gaussian HMMs and TDE-HMMs in this context, we conducted simulations that generated synthetic data representing multiple phase-coupled interactions between different cortical regions to mimic real neural data. Our study demonstrates that TDE-HMM performs better than Gaussian HMM in accurately detecting brain states from synthetic phase-coupled interaction data. Finally, for TDE-HMMs, we manipulated key parameters such as phase coupling variability, state duration, and influence of volume conduction effect to evaluate the models' performance under varying conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信