{"title":"抗坏血酸在癌症发展中的生理功能。","authors":"Michalis Agathocleous","doi":"10.1242/dmm.052201","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolite ascorbate (vitamin C) is synthesized endogenously in most animals or, in humans and some other species, obtained from the diet. Its role in cancer development is controversial. Addition of ascorbate to cultured cells or high-dose administration in animals can inhibit growth of many cancers, but most of these effects are caused by non-physiological biochemical activities. Few experiments have tested the physiological roles of ascorbate in cancer development by depleting it in physiological settings. Ascorbate depletion inhibits the activity of ten-eleven translocation (TET) enzymes in hematopoietic and leukemia cells and accelerates myeloid leukemia development. Many clinical trials have tested ascorbate supplementation in cancers and shown little or no evidence that it has a beneficial role. I propose that depletion experiments are needed to define the cancers in which ascorbate has a physiological role, establish its cellular and molecular targets, and provide a rationale for clinical trials.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":"18 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010911/pdf/","citationCount":"0","resultStr":"{\"title\":\"The physiological functions of ascorbate in the development of cancer.\",\"authors\":\"Michalis Agathocleous\",\"doi\":\"10.1242/dmm.052201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metabolite ascorbate (vitamin C) is synthesized endogenously in most animals or, in humans and some other species, obtained from the diet. Its role in cancer development is controversial. Addition of ascorbate to cultured cells or high-dose administration in animals can inhibit growth of many cancers, but most of these effects are caused by non-physiological biochemical activities. Few experiments have tested the physiological roles of ascorbate in cancer development by depleting it in physiological settings. Ascorbate depletion inhibits the activity of ten-eleven translocation (TET) enzymes in hematopoietic and leukemia cells and accelerates myeloid leukemia development. Many clinical trials have tested ascorbate supplementation in cancers and shown little or no evidence that it has a beneficial role. I propose that depletion experiments are needed to define the cancers in which ascorbate has a physiological role, establish its cellular and molecular targets, and provide a rationale for clinical trials.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.052201\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052201","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The physiological functions of ascorbate in the development of cancer.
The metabolite ascorbate (vitamin C) is synthesized endogenously in most animals or, in humans and some other species, obtained from the diet. Its role in cancer development is controversial. Addition of ascorbate to cultured cells or high-dose administration in animals can inhibit growth of many cancers, but most of these effects are caused by non-physiological biochemical activities. Few experiments have tested the physiological roles of ascorbate in cancer development by depleting it in physiological settings. Ascorbate depletion inhibits the activity of ten-eleven translocation (TET) enzymes in hematopoietic and leukemia cells and accelerates myeloid leukemia development. Many clinical trials have tested ascorbate supplementation in cancers and shown little or no evidence that it has a beneficial role. I propose that depletion experiments are needed to define the cancers in which ascorbate has a physiological role, establish its cellular and molecular targets, and provide a rationale for clinical trials.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.