{"title":"融合铁蛋白的表达、纯化和肿瘤摄取。","authors":"Guoyin Yan, Jun Li, Ziyang Li","doi":"10.13345/j.cjb.240764","DOIUrl":null,"url":null,"abstract":"<p><p>Ferritin is considered as an ideal delivery system due to its precise targeting, reversible self-assembly, high biocompatibility, and easy modification. this study aims to express, purify, and identify three fusion ferritin proteins, and explore their tumor targeting. Three fusion ferritin genes were synthesized and cloned into prokaryotic expression vectors, and the recombinant proteins were purified by affinity chromatography with nickel columns. The fusion ferritin proteins were identified by native polyacrylamide gel electrophoresis (native-PAGE), Western blotting, and circular dichroism. Fluorescein 5-isothiocyanate (FITC) was used to react with fusion ferritin, and confocal laser scanning microscopy was employed to evaluate the tumor targeting of fusion ferritin. The reaction system of sulfo-cyanine7 (Cy7-SE) with fusion ferritin was injected into the tail vein of melanoma mice for <i>in vivo</i> tumor imaging to explore the tumor targeting of fusion ferritin. The results showed that soluble fusion ferritin proteins of about 21 kDa were expressed under the induction by isopropylthio-β-d-galactoside (IPTG), and the recombinant proteins with high purity were obtained. Western blotting showed that the recombinant proteins could be recognized by the corresponding antibodies. The target proteins were identified as multimers with α helixes by native-PAGE and circular dichroism. <i>In vitro</i> and <i>in vivo</i> tumor uptake experiments demonstrated that fusion ferritin was taken up by tumor cells and tumor tissue. This study successfully expressed, purified, and identified fusion ferritin, and verified its tumor uptake <i>in vitro</i> and <i>in vivo</i>, which laid a foundation for the application of ferritin in biomedicine.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 4","pages":"1372-1381"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Expression, purification, and tumor uptake of fusion ferritin].\",\"authors\":\"Guoyin Yan, Jun Li, Ziyang Li\",\"doi\":\"10.13345/j.cjb.240764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferritin is considered as an ideal delivery system due to its precise targeting, reversible self-assembly, high biocompatibility, and easy modification. this study aims to express, purify, and identify three fusion ferritin proteins, and explore their tumor targeting. Three fusion ferritin genes were synthesized and cloned into prokaryotic expression vectors, and the recombinant proteins were purified by affinity chromatography with nickel columns. The fusion ferritin proteins were identified by native polyacrylamide gel electrophoresis (native-PAGE), Western blotting, and circular dichroism. Fluorescein 5-isothiocyanate (FITC) was used to react with fusion ferritin, and confocal laser scanning microscopy was employed to evaluate the tumor targeting of fusion ferritin. The reaction system of sulfo-cyanine7 (Cy7-SE) with fusion ferritin was injected into the tail vein of melanoma mice for <i>in vivo</i> tumor imaging to explore the tumor targeting of fusion ferritin. The results showed that soluble fusion ferritin proteins of about 21 kDa were expressed under the induction by isopropylthio-β-d-galactoside (IPTG), and the recombinant proteins with high purity were obtained. Western blotting showed that the recombinant proteins could be recognized by the corresponding antibodies. The target proteins were identified as multimers with α helixes by native-PAGE and circular dichroism. <i>In vitro</i> and <i>in vivo</i> tumor uptake experiments demonstrated that fusion ferritin was taken up by tumor cells and tumor tissue. This study successfully expressed, purified, and identified fusion ferritin, and verified its tumor uptake <i>in vitro</i> and <i>in vivo</i>, which laid a foundation for the application of ferritin in biomedicine.</p>\",\"PeriodicalId\":21778,\"journal\":{\"name\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"volume\":\"41 4\",\"pages\":\"1372-1381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13345/j.cjb.240764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
[Expression, purification, and tumor uptake of fusion ferritin].
Ferritin is considered as an ideal delivery system due to its precise targeting, reversible self-assembly, high biocompatibility, and easy modification. this study aims to express, purify, and identify three fusion ferritin proteins, and explore their tumor targeting. Three fusion ferritin genes were synthesized and cloned into prokaryotic expression vectors, and the recombinant proteins were purified by affinity chromatography with nickel columns. The fusion ferritin proteins were identified by native polyacrylamide gel electrophoresis (native-PAGE), Western blotting, and circular dichroism. Fluorescein 5-isothiocyanate (FITC) was used to react with fusion ferritin, and confocal laser scanning microscopy was employed to evaluate the tumor targeting of fusion ferritin. The reaction system of sulfo-cyanine7 (Cy7-SE) with fusion ferritin was injected into the tail vein of melanoma mice for in vivo tumor imaging to explore the tumor targeting of fusion ferritin. The results showed that soluble fusion ferritin proteins of about 21 kDa were expressed under the induction by isopropylthio-β-d-galactoside (IPTG), and the recombinant proteins with high purity were obtained. Western blotting showed that the recombinant proteins could be recognized by the corresponding antibodies. The target proteins were identified as multimers with α helixes by native-PAGE and circular dichroism. In vitro and in vivo tumor uptake experiments demonstrated that fusion ferritin was taken up by tumor cells and tumor tissue. This study successfully expressed, purified, and identified fusion ferritin, and verified its tumor uptake in vitro and in vivo, which laid a foundation for the application of ferritin in biomedicine.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.