{"title":"耐药HR+/HER2-乳腺癌MUC1-C依赖性为抗体-药物结合治疗提供了新的靶点。","authors":"Ayako Nakashoji, Atrayee Bhattacharya, Hiroki Ozawa, Naoki Haratake, Keisuke Shigeta, Atsushi Fushimi, Nami Yamashita, Akira Matsui, Shoko Kure, Tomoe Kameyama, Makoto Takeuchi, Kazumasa Fukuda, Takamichi Yokoe, Aiko Nagayama, Tetsu Hayahsida, Yuko Kitagawa, Renyan Liu, Antonio Giordano, Rinath Jeselsohn, Geoffrey I Shapiro, Donald Kufe","doi":"10.1038/s41523-025-00751-w","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment of hormone receptor (HR)-positive, HER2-negative breast cancer (HR+/HER2- BC) is limited by resistance to endocrine therapy (ET) and CDK4/6 inhibitors. There is no known common pathway that confers resistance to these agents. We report that (i) the MUC1 gene is upregulated in HR+/HER2- BCs and (ii) the MUC1-C protein regulates estrogen receptor alpha (ER)-driven transcriptomes. Mechanistically, we demonstrate that MUC1-C is necessary for expression of SRC-3 and MED1 coactivators that drive ER-mediated target gene transcription. Cells with ESR1 mutations that confer ET resistance, as well as cells with acquired resistance to the CDK4/6 inhibitor abemaciclib, are dependent on MUC1-C for (i) expression of these coactivators and ER target genes, (ii) survival, and (iii) self-renewal capacity. In support of these results, we show that treatment of HR+/HER2- BC cells with an anti-MUC1-C antibody-drug conjugate (ADC) effectively inhibits survival, self-renewal and tumorgenicity. These findings indicate that MUC1-C is a common effector of drug-resistant HR+/HER2- BC cells and is a potential target for their treatment.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"11 1","pages":"39"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033257/pdf/","citationCount":"0","resultStr":"{\"title\":\"MUC1-C dependency in drug resistant HR+/HER2- breast cancer identifies a new target for antibody-drug conjugate treatment.\",\"authors\":\"Ayako Nakashoji, Atrayee Bhattacharya, Hiroki Ozawa, Naoki Haratake, Keisuke Shigeta, Atsushi Fushimi, Nami Yamashita, Akira Matsui, Shoko Kure, Tomoe Kameyama, Makoto Takeuchi, Kazumasa Fukuda, Takamichi Yokoe, Aiko Nagayama, Tetsu Hayahsida, Yuko Kitagawa, Renyan Liu, Antonio Giordano, Rinath Jeselsohn, Geoffrey I Shapiro, Donald Kufe\",\"doi\":\"10.1038/s41523-025-00751-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment of hormone receptor (HR)-positive, HER2-negative breast cancer (HR+/HER2- BC) is limited by resistance to endocrine therapy (ET) and CDK4/6 inhibitors. There is no known common pathway that confers resistance to these agents. We report that (i) the MUC1 gene is upregulated in HR+/HER2- BCs and (ii) the MUC1-C protein regulates estrogen receptor alpha (ER)-driven transcriptomes. Mechanistically, we demonstrate that MUC1-C is necessary for expression of SRC-3 and MED1 coactivators that drive ER-mediated target gene transcription. Cells with ESR1 mutations that confer ET resistance, as well as cells with acquired resistance to the CDK4/6 inhibitor abemaciclib, are dependent on MUC1-C for (i) expression of these coactivators and ER target genes, (ii) survival, and (iii) self-renewal capacity. In support of these results, we show that treatment of HR+/HER2- BC cells with an anti-MUC1-C antibody-drug conjugate (ADC) effectively inhibits survival, self-renewal and tumorgenicity. These findings indicate that MUC1-C is a common effector of drug-resistant HR+/HER2- BC cells and is a potential target for their treatment.</p>\",\"PeriodicalId\":19247,\"journal\":{\"name\":\"NPJ Breast Cancer\",\"volume\":\"11 1\",\"pages\":\"39\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Breast Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41523-025-00751-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-025-00751-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
MUC1-C dependency in drug resistant HR+/HER2- breast cancer identifies a new target for antibody-drug conjugate treatment.
Treatment of hormone receptor (HR)-positive, HER2-negative breast cancer (HR+/HER2- BC) is limited by resistance to endocrine therapy (ET) and CDK4/6 inhibitors. There is no known common pathway that confers resistance to these agents. We report that (i) the MUC1 gene is upregulated in HR+/HER2- BCs and (ii) the MUC1-C protein regulates estrogen receptor alpha (ER)-driven transcriptomes. Mechanistically, we demonstrate that MUC1-C is necessary for expression of SRC-3 and MED1 coactivators that drive ER-mediated target gene transcription. Cells with ESR1 mutations that confer ET resistance, as well as cells with acquired resistance to the CDK4/6 inhibitor abemaciclib, are dependent on MUC1-C for (i) expression of these coactivators and ER target genes, (ii) survival, and (iii) self-renewal capacity. In support of these results, we show that treatment of HR+/HER2- BC cells with an anti-MUC1-C antibody-drug conjugate (ADC) effectively inhibits survival, self-renewal and tumorgenicity. These findings indicate that MUC1-C is a common effector of drug-resistant HR+/HER2- BC cells and is a potential target for their treatment.
期刊介绍:
npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.