生成扩散模型中的潜在抽象。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-03-31 DOI:10.3390/e27040371
Giulio Franzese, Mattia Martini, Giulio Corallo, Paolo Papotti, Pietro Michiardi
{"title":"生成扩散模型中的潜在抽象。","authors":"Giulio Franzese, Mattia Martini, Giulio Corallo, Paolo Papotti, Pietro Michiardi","doi":"10.3390/e27040371","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we study how diffusion-based generative models produce high-dimensional data, such as images, by relying on latent abstractions that guide the generative process. We introduce a novel theoretical framework extending Nonlinear Filtering (NLF), offering a new perspective on SDE-based generative models. Our theory is based on a new formulation of joint (state and measurement) dynamics and an information-theoretic measure of state influence on the measurement process. We show that diffusion models can be interpreted as a system of SDE, describing a non-linear filter where unobservable latent abstractions steer the dynamics of an observable measurement process. Additionally, we present an empirical study validating our theory and supporting previous findings on the emergence of latent abstractions at different generative stages.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025362/pdf/","citationCount":"0","resultStr":"{\"title\":\"Latent Abstractions in Generative Diffusion Models.\",\"authors\":\"Giulio Franzese, Mattia Martini, Giulio Corallo, Paolo Papotti, Pietro Michiardi\",\"doi\":\"10.3390/e27040371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we study how diffusion-based generative models produce high-dimensional data, such as images, by relying on latent abstractions that guide the generative process. We introduce a novel theoretical framework extending Nonlinear Filtering (NLF), offering a new perspective on SDE-based generative models. Our theory is based on a new formulation of joint (state and measurement) dynamics and an information-theoretic measure of state influence on the measurement process. We show that diffusion models can be interpreted as a system of SDE, describing a non-linear filter where unobservable latent abstractions steer the dynamics of an observable measurement process. Additionally, we present an empirical study validating our theory and supporting previous findings on the emergence of latent abstractions at different generative stages.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040371\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040371","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了基于扩散的生成模型如何通过依赖指导生成过程的潜在抽象来生成高维数据(如图像)。我们引入了一个新的理论框架,扩展了非线性滤波(NLF),为基于sde的生成模型提供了一个新的视角。我们的理论是基于一种新的联合(状态和测量)动力学公式和状态对测量过程影响的信息理论度量。我们表明扩散模型可以被解释为一个SDE系统,描述了一个非线性滤波器,其中不可观察的潜在抽象引导可观察测量过程的动态。此外,我们提出了一项实证研究,验证了我们的理论,并支持了之前关于潜在抽象在不同生成阶段出现的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Abstractions in Generative Diffusion Models.

In this work, we study how diffusion-based generative models produce high-dimensional data, such as images, by relying on latent abstractions that guide the generative process. We introduce a novel theoretical framework extending Nonlinear Filtering (NLF), offering a new perspective on SDE-based generative models. Our theory is based on a new formulation of joint (state and measurement) dynamics and an information-theoretic measure of state influence on the measurement process. We show that diffusion models can be interpreted as a system of SDE, describing a non-linear filter where unobservable latent abstractions steer the dynamics of an observable measurement process. Additionally, we present an empirical study validating our theory and supporting previous findings on the emergence of latent abstractions at different generative stages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信