Khoudia Diop, Babacar Mbaye, Somayeh Nili, Alysé Filin, Myriam Benlaifaoui, Julie Malo, Anne Sophie Renaud, Wiam Belkaid, Sebastian Hunter, Meriem Messaoudene, Karla A Lee, Arielle Elkrief, Bertrand Routy
{"title":"结合培养组学和宏基因组学测序来表征接受免疫检查点抑制剂治疗的癌症患者的肠道微生物组。","authors":"Khoudia Diop, Babacar Mbaye, Somayeh Nili, Alysé Filin, Myriam Benlaifaoui, Julie Malo, Anne Sophie Renaud, Wiam Belkaid, Sebastian Hunter, Meriem Messaoudene, Karla A Lee, Arielle Elkrief, Bertrand Routy","doi":"10.1186/s13099-025-00694-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The gut microbiome represents a novel biomarker for melanoma and non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICI). Gut microbiome metagenomics profiling studies of patients treated with immunotherapy identified bacteria associated with ICI efficacy, while others have been linked to resistance. However, limitations of metagenomics sequencing, such as complex bioinformatic processing requirements, necessity of a threshold for positive detection, and the inability to detect live organisms, have hindered our ability to fully characterize the gut microbiome. Therefore, combining metagenomics with high-throughput culture-based techniques (culturomics) represents an ideal strategy to fully characterize microbiome composition to more robustly position the microbiome as a biomarker of response to ICI.</p><p><strong>Methods: </strong>We performed culturomics using fecal samples from 22 patients from two academic centres in Canada and the United Kingdom with NSCLC and cutaneous melanoma treated with ICI (cancer group), comparing their microbiome composition to that of 7 healthy volunteers (HV), along with matching shotgun metagenomics sequencing.</p><p><strong>Results: </strong>For culturomics results, 221 distinct species were isolated. Among these 221 distinct species, 182 were identified in the cancer group and 110 in the HV group. In the HV group, the mean species richness was higher compared to the cancer group (34 vs. 18, respectively, p = 0.002). Beta diversity revealed separate clusters between groups (p = 0.004). Bifidobacterium spp. and Bacteroides spp. were enriched in HV, while cancer patients showed an overrepresentation of Enterocloster species, as well as Veillonella parvula. Next, comparing cancer patients' clinical outcomes to ICI, we observed that among the 20 most abundant bacteria present in non-responder patients, 2 belonged to the genus Enterocloster, along with an enrichment of Hungatella hathewayi and Cutibacterium acnes. In contrast, responders to ICI exhibited a predominance of Bacteroides spp. In NSCLC patients, metagenomics analysis revealed that of the 154 bacteria species isolated through culturomics, 61/154 (39%) were also identified by metagenomics sequencing. Importantly, 94 individual species were uniquely detected by culturomics.</p><p><strong>Conclusion: </strong>These findings highlight that culturomics and metagenomics can serve as complementary tools to characterize the microbiome in patients with cancer. This integrated approach uncovers specific microbiome signatures that differentiate HV from cancer patients, and identifies specific species associated with therapy response and resistance.</p>","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":"17 1","pages":"21"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992761/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coupling culturomics and metagenomics sequencing to characterize the gut microbiome of patients with cancer treated with immune checkpoint inhibitors.\",\"authors\":\"Khoudia Diop, Babacar Mbaye, Somayeh Nili, Alysé Filin, Myriam Benlaifaoui, Julie Malo, Anne Sophie Renaud, Wiam Belkaid, Sebastian Hunter, Meriem Messaoudene, Karla A Lee, Arielle Elkrief, Bertrand Routy\",\"doi\":\"10.1186/s13099-025-00694-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The gut microbiome represents a novel biomarker for melanoma and non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICI). Gut microbiome metagenomics profiling studies of patients treated with immunotherapy identified bacteria associated with ICI efficacy, while others have been linked to resistance. However, limitations of metagenomics sequencing, such as complex bioinformatic processing requirements, necessity of a threshold for positive detection, and the inability to detect live organisms, have hindered our ability to fully characterize the gut microbiome. Therefore, combining metagenomics with high-throughput culture-based techniques (culturomics) represents an ideal strategy to fully characterize microbiome composition to more robustly position the microbiome as a biomarker of response to ICI.</p><p><strong>Methods: </strong>We performed culturomics using fecal samples from 22 patients from two academic centres in Canada and the United Kingdom with NSCLC and cutaneous melanoma treated with ICI (cancer group), comparing their microbiome composition to that of 7 healthy volunteers (HV), along with matching shotgun metagenomics sequencing.</p><p><strong>Results: </strong>For culturomics results, 221 distinct species were isolated. Among these 221 distinct species, 182 were identified in the cancer group and 110 in the HV group. In the HV group, the mean species richness was higher compared to the cancer group (34 vs. 18, respectively, p = 0.002). Beta diversity revealed separate clusters between groups (p = 0.004). Bifidobacterium spp. and Bacteroides spp. were enriched in HV, while cancer patients showed an overrepresentation of Enterocloster species, as well as Veillonella parvula. Next, comparing cancer patients' clinical outcomes to ICI, we observed that among the 20 most abundant bacteria present in non-responder patients, 2 belonged to the genus Enterocloster, along with an enrichment of Hungatella hathewayi and Cutibacterium acnes. In contrast, responders to ICI exhibited a predominance of Bacteroides spp. In NSCLC patients, metagenomics analysis revealed that of the 154 bacteria species isolated through culturomics, 61/154 (39%) were also identified by metagenomics sequencing. Importantly, 94 individual species were uniquely detected by culturomics.</p><p><strong>Conclusion: </strong>These findings highlight that culturomics and metagenomics can serve as complementary tools to characterize the microbiome in patients with cancer. This integrated approach uncovers specific microbiome signatures that differentiate HV from cancer patients, and identifies specific species associated with therapy response and resistance.</p>\",\"PeriodicalId\":12833,\"journal\":{\"name\":\"Gut Pathogens\",\"volume\":\"17 1\",\"pages\":\"21\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992761/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13099-025-00694-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-025-00694-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Coupling culturomics and metagenomics sequencing to characterize the gut microbiome of patients with cancer treated with immune checkpoint inhibitors.
Background: The gut microbiome represents a novel biomarker for melanoma and non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICI). Gut microbiome metagenomics profiling studies of patients treated with immunotherapy identified bacteria associated with ICI efficacy, while others have been linked to resistance. However, limitations of metagenomics sequencing, such as complex bioinformatic processing requirements, necessity of a threshold for positive detection, and the inability to detect live organisms, have hindered our ability to fully characterize the gut microbiome. Therefore, combining metagenomics with high-throughput culture-based techniques (culturomics) represents an ideal strategy to fully characterize microbiome composition to more robustly position the microbiome as a biomarker of response to ICI.
Methods: We performed culturomics using fecal samples from 22 patients from two academic centres in Canada and the United Kingdom with NSCLC and cutaneous melanoma treated with ICI (cancer group), comparing their microbiome composition to that of 7 healthy volunteers (HV), along with matching shotgun metagenomics sequencing.
Results: For culturomics results, 221 distinct species were isolated. Among these 221 distinct species, 182 were identified in the cancer group and 110 in the HV group. In the HV group, the mean species richness was higher compared to the cancer group (34 vs. 18, respectively, p = 0.002). Beta diversity revealed separate clusters between groups (p = 0.004). Bifidobacterium spp. and Bacteroides spp. were enriched in HV, while cancer patients showed an overrepresentation of Enterocloster species, as well as Veillonella parvula. Next, comparing cancer patients' clinical outcomes to ICI, we observed that among the 20 most abundant bacteria present in non-responder patients, 2 belonged to the genus Enterocloster, along with an enrichment of Hungatella hathewayi and Cutibacterium acnes. In contrast, responders to ICI exhibited a predominance of Bacteroides spp. In NSCLC patients, metagenomics analysis revealed that of the 154 bacteria species isolated through culturomics, 61/154 (39%) were also identified by metagenomics sequencing. Importantly, 94 individual species were uniquely detected by culturomics.
Conclusion: These findings highlight that culturomics and metagenomics can serve as complementary tools to characterize the microbiome in patients with cancer. This integrated approach uncovers specific microbiome signatures that differentiate HV from cancer patients, and identifies specific species associated with therapy response and resistance.
Gut PathogensGASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍:
Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology.
Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).