Kashmala Samad, Fazeelat Samad, Abdulfatah M Alayoubi, Aisha Siddiqua, Mohammed Turki Hussain Alharthi, Hussam Baghdadi, Sumra Wajid Abbasi, Muzammil Ahmad Khan, Muhammad Latif
{"title":"不同表型小眼的多近亲家族分离鉴定的新突变和复发突变的遗传学研究。","authors":"Kashmala Samad, Fazeelat Samad, Abdulfatah M Alayoubi, Aisha Siddiqua, Mohammed Turki Hussain Alharthi, Hussam Baghdadi, Sumra Wajid Abbasi, Muzammil Ahmad Khan, Muhammad Latif","doi":"10.2174/0109298673365255250418092319","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Anophthalmia/microphthalmia (A/M) and anterior segment dysgenesis (ASD) are severe ocular anomalies impacting eye morphology, occurring in 30 per 100,000 live births. Genetic research has identified over 30 genes linked to A/M anomalies, with their products mainly involved in eye organogenesis.</p><p><strong>Aims and objectives: </strong>This study examined two consanguineous A/M families to identify disease-associated pathogenic mutations and predict their functional impact.</p><p><strong>Methodology: </strong>Patients were clinically examined using A-scan and ophthalmic ultrasonography. Whole exome sequencing (WES) identified candidate pathogenic variants validated through Sanger sequencing. Computational analyses assessed the impact of these mutations on protein structure and function.</p><p><strong>Results: </strong>The clinical diagnosis of family A revealed microphthalmia with ASD, while family B presented with an A/M phenotype. Exome analysis of family A identified a novel missense variant, NM_012293:c.A3742G [p.(Arg1248Gly)], in the peroxidasin (PXDN) gene (ClinVar ID: VCV001333267.1). At the cellular level, PXDN is involved in establishing sulfilimine bonds in collagen IV, a component of the basement membrane, suggesting that ocular defects may result from impaired integrity of the basement membrane in the developing eye. In contrast, Family B exhibited a nonsense variant NM _012186:c.720C>A (p.- Cys240*) in the FOXE3 gene. This variant has been previously reported in other South Asian populations, suggesting a founder effect in subcontinent populations. Structural modeling and simulation analysis of mutant proteins revealed altered properties, thus corroborating the pathogenicity of the identified mutation.</p><p><strong>Conclusion: </strong>Our findings may contribute to the elucidation of genotype-phenotype correlations, potentially facilitating the molecular diagnosis of microphthalmia and ASD.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Studies on Multiple Consanguineous Families Segregating Diverse Phenotypes of Microphthalmia Identified Novel and Recurrent Mutations.\",\"authors\":\"Kashmala Samad, Fazeelat Samad, Abdulfatah M Alayoubi, Aisha Siddiqua, Mohammed Turki Hussain Alharthi, Hussam Baghdadi, Sumra Wajid Abbasi, Muzammil Ahmad Khan, Muhammad Latif\",\"doi\":\"10.2174/0109298673365255250418092319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Anophthalmia/microphthalmia (A/M) and anterior segment dysgenesis (ASD) are severe ocular anomalies impacting eye morphology, occurring in 30 per 100,000 live births. Genetic research has identified over 30 genes linked to A/M anomalies, with their products mainly involved in eye organogenesis.</p><p><strong>Aims and objectives: </strong>This study examined two consanguineous A/M families to identify disease-associated pathogenic mutations and predict their functional impact.</p><p><strong>Methodology: </strong>Patients were clinically examined using A-scan and ophthalmic ultrasonography. Whole exome sequencing (WES) identified candidate pathogenic variants validated through Sanger sequencing. Computational analyses assessed the impact of these mutations on protein structure and function.</p><p><strong>Results: </strong>The clinical diagnosis of family A revealed microphthalmia with ASD, while family B presented with an A/M phenotype. Exome analysis of family A identified a novel missense variant, NM_012293:c.A3742G [p.(Arg1248Gly)], in the peroxidasin (PXDN) gene (ClinVar ID: VCV001333267.1). At the cellular level, PXDN is involved in establishing sulfilimine bonds in collagen IV, a component of the basement membrane, suggesting that ocular defects may result from impaired integrity of the basement membrane in the developing eye. In contrast, Family B exhibited a nonsense variant NM _012186:c.720C>A (p.- Cys240*) in the FOXE3 gene. This variant has been previously reported in other South Asian populations, suggesting a founder effect in subcontinent populations. Structural modeling and simulation analysis of mutant proteins revealed altered properties, thus corroborating the pathogenicity of the identified mutation.</p><p><strong>Conclusion: </strong>Our findings may contribute to the elucidation of genotype-phenotype correlations, potentially facilitating the molecular diagnosis of microphthalmia and ASD.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673365255250418092319\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673365255250418092319","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genetic Studies on Multiple Consanguineous Families Segregating Diverse Phenotypes of Microphthalmia Identified Novel and Recurrent Mutations.
Introduction: Anophthalmia/microphthalmia (A/M) and anterior segment dysgenesis (ASD) are severe ocular anomalies impacting eye morphology, occurring in 30 per 100,000 live births. Genetic research has identified over 30 genes linked to A/M anomalies, with their products mainly involved in eye organogenesis.
Aims and objectives: This study examined two consanguineous A/M families to identify disease-associated pathogenic mutations and predict their functional impact.
Methodology: Patients were clinically examined using A-scan and ophthalmic ultrasonography. Whole exome sequencing (WES) identified candidate pathogenic variants validated through Sanger sequencing. Computational analyses assessed the impact of these mutations on protein structure and function.
Results: The clinical diagnosis of family A revealed microphthalmia with ASD, while family B presented with an A/M phenotype. Exome analysis of family A identified a novel missense variant, NM_012293:c.A3742G [p.(Arg1248Gly)], in the peroxidasin (PXDN) gene (ClinVar ID: VCV001333267.1). At the cellular level, PXDN is involved in establishing sulfilimine bonds in collagen IV, a component of the basement membrane, suggesting that ocular defects may result from impaired integrity of the basement membrane in the developing eye. In contrast, Family B exhibited a nonsense variant NM _012186:c.720C>A (p.- Cys240*) in the FOXE3 gene. This variant has been previously reported in other South Asian populations, suggesting a founder effect in subcontinent populations. Structural modeling and simulation analysis of mutant proteins revealed altered properties, thus corroborating the pathogenicity of the identified mutation.
Conclusion: Our findings may contribute to the elucidation of genotype-phenotype correlations, potentially facilitating the molecular diagnosis of microphthalmia and ASD.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.