城市绿地层状圈非共生固氮作用研究

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Jian-Feng Li, Le-Yang Yang, Zhao Zhang, Xin-Rong Huang, Hu Li, Shun Li, Xiao-Ru Yang
{"title":"城市绿地层状圈非共生固氮作用研究","authors":"Jian-Feng Li, Le-Yang Yang, Zhao Zhang, Xin-Rong Huang, Hu Li, Shun Li, Xiao-Ru Yang","doi":"10.1007/s00284-025-04250-w","DOIUrl":null,"url":null,"abstract":"<p><p>Biological nitrogen fixation (BNF) is an important source of nitrogen in ecosystems. Compared to symbiotic nitrogen-fixing microorganisms, free-living diazotrophic bacteria have a broader distribution and greater diversity, demonstrating greater potential for application. Leaf surfaces constitute one of the largest microbial reservoirs on Earth, harboring a variety of free-living diazotrophic bacteria, contributing significantly to plant N acquisition and growth. The distribution patterns, abundance, diversity, and the environmental variables affecting the asymbiotic nitrogen fixation (ANF) rates of free-living diazotrophic bacteria of non-leguminous plants in urban green spaces were investigated using high-throughput sequencing of nifH gene amplicons and the acetylene reduction method. Both green space type and plant species significantly impact ANF rates and nifH gene abundance in the phyllosphere, with green space type having a more pronounced effect. Leaf metal elements iron (Fe), molybdenum (Mo), and the free-living diazotrophic bacteria of the genus Skermanella collectively influence the ANF rates in the phyllosphere of urban green spaces. Linear regression analysis revealed that metal elements Fe, Mo, and potassium (K) in the leaves were significantly positive correlated with the diversity of the free-living diazotrophic bacteria and the abundance of the N-fixing gene nifH. The alpha diversity and symbiotic network structure of the free-living diazotrophic bacterial community in the phyllosphere indicated a significant negative correlation between human disturbance and environmental perturbation and the biodiversity and network complexity of these bacteria. This study provides a crucial foundation for understanding the nitrogen-fixing functions of microbes in urban ecosystems and their contributions to the nitrogen cycle.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 6","pages":"276"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymbiotic Nitrogen Fixation in the Phyllosphere of Urban Green Spaces.\",\"authors\":\"Jian-Feng Li, Le-Yang Yang, Zhao Zhang, Xin-Rong Huang, Hu Li, Shun Li, Xiao-Ru Yang\",\"doi\":\"10.1007/s00284-025-04250-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological nitrogen fixation (BNF) is an important source of nitrogen in ecosystems. Compared to symbiotic nitrogen-fixing microorganisms, free-living diazotrophic bacteria have a broader distribution and greater diversity, demonstrating greater potential for application. Leaf surfaces constitute one of the largest microbial reservoirs on Earth, harboring a variety of free-living diazotrophic bacteria, contributing significantly to plant N acquisition and growth. The distribution patterns, abundance, diversity, and the environmental variables affecting the asymbiotic nitrogen fixation (ANF) rates of free-living diazotrophic bacteria of non-leguminous plants in urban green spaces were investigated using high-throughput sequencing of nifH gene amplicons and the acetylene reduction method. Both green space type and plant species significantly impact ANF rates and nifH gene abundance in the phyllosphere, with green space type having a more pronounced effect. Leaf metal elements iron (Fe), molybdenum (Mo), and the free-living diazotrophic bacteria of the genus Skermanella collectively influence the ANF rates in the phyllosphere of urban green spaces. Linear regression analysis revealed that metal elements Fe, Mo, and potassium (K) in the leaves were significantly positive correlated with the diversity of the free-living diazotrophic bacteria and the abundance of the N-fixing gene nifH. The alpha diversity and symbiotic network structure of the free-living diazotrophic bacterial community in the phyllosphere indicated a significant negative correlation between human disturbance and environmental perturbation and the biodiversity and network complexity of these bacteria. This study provides a crucial foundation for understanding the nitrogen-fixing functions of microbes in urban ecosystems and their contributions to the nitrogen cycle.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 6\",\"pages\":\"276\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-025-04250-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04250-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物固氮(BNF)是生态系统氮的重要来源。与共生固氮微生物相比,自由生活重氮营养细菌分布更广、多样性更强,具有更大的应用潜力。叶片表面是地球上最大的微生物库之一,是各种自由生活的重氮营养细菌的避难所,对植物氮的获取和生长有重要贡献。采用nifH基因扩增子高通量测序和乙炔还原法,研究了城市绿地非豆科植物重氮营养菌的分布格局、丰度、多样性及影响其非共生固氮速率的环境因子。绿地类型和植物种类均显著影响层层ANF率和nifH基因丰度,其中绿地类型的影响更为显著。叶片金属元素铁(Fe)、钼(Mo)和自由生活的重氮营养细菌共同影响城市绿地层状圈的ANF率。线性回归分析表明,叶片中金属元素Fe、Mo和K与自由生活重氮营养细菌多样性和固氮基因nifH丰度呈显著正相关。层际自由重氮营养细菌群落的α多样性和共生网络结构表明,人为干扰和环境扰动与重氮营养细菌群落的多样性和网络复杂性呈显著负相关。该研究为了解微生物在城市生态系统中的固氮功能及其对氮循环的贡献提供了重要的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymbiotic Nitrogen Fixation in the Phyllosphere of Urban Green Spaces.

Biological nitrogen fixation (BNF) is an important source of nitrogen in ecosystems. Compared to symbiotic nitrogen-fixing microorganisms, free-living diazotrophic bacteria have a broader distribution and greater diversity, demonstrating greater potential for application. Leaf surfaces constitute one of the largest microbial reservoirs on Earth, harboring a variety of free-living diazotrophic bacteria, contributing significantly to plant N acquisition and growth. The distribution patterns, abundance, diversity, and the environmental variables affecting the asymbiotic nitrogen fixation (ANF) rates of free-living diazotrophic bacteria of non-leguminous plants in urban green spaces were investigated using high-throughput sequencing of nifH gene amplicons and the acetylene reduction method. Both green space type and plant species significantly impact ANF rates and nifH gene abundance in the phyllosphere, with green space type having a more pronounced effect. Leaf metal elements iron (Fe), molybdenum (Mo), and the free-living diazotrophic bacteria of the genus Skermanella collectively influence the ANF rates in the phyllosphere of urban green spaces. Linear regression analysis revealed that metal elements Fe, Mo, and potassium (K) in the leaves were significantly positive correlated with the diversity of the free-living diazotrophic bacteria and the abundance of the N-fixing gene nifH. The alpha diversity and symbiotic network structure of the free-living diazotrophic bacterial community in the phyllosphere indicated a significant negative correlation between human disturbance and environmental perturbation and the biodiversity and network complexity of these bacteria. This study provides a crucial foundation for understanding the nitrogen-fixing functions of microbes in urban ecosystems and their contributions to the nitrogen cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信