Caio Santos Bonilha, Flavio Protasio Veras, Anderson Dos Santos Ramos, Giovanni Freitas Gomes, Robertha Mariana Rodrigues Lemes, Eurico Arruda, José Carlos Alves-Filho, Thiago Mattar Cunha, Fernando Queiroz Cunha
{"title":"抑制PAD4对SARS-CoV-2感染免疫应答的影响","authors":"Caio Santos Bonilha, Flavio Protasio Veras, Anderson Dos Santos Ramos, Giovanni Freitas Gomes, Robertha Mariana Rodrigues Lemes, Eurico Arruda, José Carlos Alves-Filho, Thiago Mattar Cunha, Fernando Queiroz Cunha","doi":"10.1016/j.mucimm.2025.04.006","DOIUrl":null,"url":null,"abstract":"<p><p>Protein arginine deiminase 4 (PAD4) has emerged as a potential therapeutic target for various diseases due to its role in promoting neutrophil extracellular trap (NET) formation. NETs, composed of DNA and antimicrobial proteins, serve as a defense mechanism against pathogens but can also drive lung injury, particularly in SARS-CoV-2 infection. In this study, we examined the effects of PAD4 inhibition on clinical outcomes and adaptive immunity within the context of SARS-CoV-2 infection. Our results show that PAD4 pharmacological inhibition reduced lung NET concentration and improved clinical outcomes, similar to treatment with recombinant human DNase (rhDNase), which degrades NET structure. However, in contrast to rhDNase, PAD4 targeting diminished virus-specific T cell responses by impairing dendritic cell antigen presentation and reducing IL-2 signaling by affecting its production by T cells. In line with these observations, PAD4 pharmacological inhibition diminished antigen-specific T cell responses in a model of lung inflammation. These findings highlight the importance of carefully evaluating PAD4 as a therapeutic target in COVID-19, given its potential to compromise adaptive immune responses crucial for fighting the virus.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PAD4 inhibition impacts immune responses in SARS-CoV-2 infection.\",\"authors\":\"Caio Santos Bonilha, Flavio Protasio Veras, Anderson Dos Santos Ramos, Giovanni Freitas Gomes, Robertha Mariana Rodrigues Lemes, Eurico Arruda, José Carlos Alves-Filho, Thiago Mattar Cunha, Fernando Queiroz Cunha\",\"doi\":\"10.1016/j.mucimm.2025.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein arginine deiminase 4 (PAD4) has emerged as a potential therapeutic target for various diseases due to its role in promoting neutrophil extracellular trap (NET) formation. NETs, composed of DNA and antimicrobial proteins, serve as a defense mechanism against pathogens but can also drive lung injury, particularly in SARS-CoV-2 infection. In this study, we examined the effects of PAD4 inhibition on clinical outcomes and adaptive immunity within the context of SARS-CoV-2 infection. Our results show that PAD4 pharmacological inhibition reduced lung NET concentration and improved clinical outcomes, similar to treatment with recombinant human DNase (rhDNase), which degrades NET structure. However, in contrast to rhDNase, PAD4 targeting diminished virus-specific T cell responses by impairing dendritic cell antigen presentation and reducing IL-2 signaling by affecting its production by T cells. In line with these observations, PAD4 pharmacological inhibition diminished antigen-specific T cell responses in a model of lung inflammation. These findings highlight the importance of carefully evaluating PAD4 as a therapeutic target in COVID-19, given its potential to compromise adaptive immune responses crucial for fighting the virus.</p>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mucimm.2025.04.006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2025.04.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
PAD4 inhibition impacts immune responses in SARS-CoV-2 infection.
Protein arginine deiminase 4 (PAD4) has emerged as a potential therapeutic target for various diseases due to its role in promoting neutrophil extracellular trap (NET) formation. NETs, composed of DNA and antimicrobial proteins, serve as a defense mechanism against pathogens but can also drive lung injury, particularly in SARS-CoV-2 infection. In this study, we examined the effects of PAD4 inhibition on clinical outcomes and adaptive immunity within the context of SARS-CoV-2 infection. Our results show that PAD4 pharmacological inhibition reduced lung NET concentration and improved clinical outcomes, similar to treatment with recombinant human DNase (rhDNase), which degrades NET structure. However, in contrast to rhDNase, PAD4 targeting diminished virus-specific T cell responses by impairing dendritic cell antigen presentation and reducing IL-2 signaling by affecting its production by T cells. In line with these observations, PAD4 pharmacological inhibition diminished antigen-specific T cell responses in a model of lung inflammation. These findings highlight the importance of carefully evaluating PAD4 as a therapeutic target in COVID-19, given its potential to compromise adaptive immune responses crucial for fighting the virus.
期刊介绍:
Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.